气体解吸与次声信号之间的相关性和机制

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Resources Research Pub Date : 2024-11-18 DOI:10.1007/s11053-024-10417-2
Sijie Yang, Yuanping Cheng, Yang Lei, Zhuang Lu, Xiaoxi Cheng, Hao Wang, Kuo Zhu
{"title":"气体解吸与次声信号之间的相关性和机制","authors":"Sijie Yang, Yuanping Cheng, Yang Lei, Zhuang Lu, Xiaoxi Cheng, Hao Wang, Kuo Zhu","doi":"10.1007/s11053-024-10417-2","DOIUrl":null,"url":null,"abstract":"<p>Coal and gas desorption, as a major form of gas energy release, is a key factor in triggering coal and gas outbursts. Therefore, studying the physical characteristics during coal and gas desorption is essential for understanding the development process of coal and gas outbursts. Based on gas dynamics during coal particle gas desorption, this study established a connection between gas desorption and infrasound signals, elaborating on the generation mechanism of infrasound signals during coal particle gas desorption and validating the feasibility of the theory through experimental data, thereby demonstrating the spontaneous occurrence of subsonic tremors during coal particle gas desorption. Combining observational data, it was found that the peak value of infrasound signals generated during desorption experiments is correlated positively with the initial pressure; while, the dominant frequency of infrasound signals is influenced by the proportion of intergranular pores and fractures within the experimental vessel. To further validate the theory of subsonic generation, a mathematical model describing pressure oscillations within intergranular pores, thereby explaining the mechanism of subsonic tremors, was established. The model confirms that the generation and characteristics of infrasound signals are controlled by the parameters of intergranular pores in coal samples. The model effectively simulates changes in the characteristics of infrasound signal tremors during desorption under different conditions, confirming that the physical properties of intergranular pores are crucial factors influencing the generation of infrasound signals and their characteristics during coal and gas desorption.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"80 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation Between and Mechanisms of Gas Desorption and Infrasound Signals\",\"authors\":\"Sijie Yang, Yuanping Cheng, Yang Lei, Zhuang Lu, Xiaoxi Cheng, Hao Wang, Kuo Zhu\",\"doi\":\"10.1007/s11053-024-10417-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coal and gas desorption, as a major form of gas energy release, is a key factor in triggering coal and gas outbursts. Therefore, studying the physical characteristics during coal and gas desorption is essential for understanding the development process of coal and gas outbursts. Based on gas dynamics during coal particle gas desorption, this study established a connection between gas desorption and infrasound signals, elaborating on the generation mechanism of infrasound signals during coal particle gas desorption and validating the feasibility of the theory through experimental data, thereby demonstrating the spontaneous occurrence of subsonic tremors during coal particle gas desorption. Combining observational data, it was found that the peak value of infrasound signals generated during desorption experiments is correlated positively with the initial pressure; while, the dominant frequency of infrasound signals is influenced by the proportion of intergranular pores and fractures within the experimental vessel. To further validate the theory of subsonic generation, a mathematical model describing pressure oscillations within intergranular pores, thereby explaining the mechanism of subsonic tremors, was established. The model confirms that the generation and characteristics of infrasound signals are controlled by the parameters of intergranular pores in coal samples. The model effectively simulates changes in the characteristics of infrasound signal tremors during desorption under different conditions, confirming that the physical properties of intergranular pores are crucial factors influencing the generation of infrasound signals and their characteristics during coal and gas desorption.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10417-2\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10417-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

煤与瓦斯解吸作为瓦斯能量释放的一种主要形式,是引发煤与瓦斯突出的关键因素。因此,研究煤与瓦斯解吸过程中的物理特征对于了解煤与瓦斯突出的发展过程至关重要。本研究以煤粒瓦斯解吸过程中的气体动力学为基础,建立了瓦斯解吸与次声信号之间的联系,阐述了煤粒瓦斯解吸过程中次声信号的产生机理,并通过实验数据验证了理论的可行性,从而证明了煤粒瓦斯解吸过程中次声震源的自发发生。结合观测数据发现,解吸实验过程中产生的次声波信号的峰值与初始压力呈正相关;而次声波信号的主频则受实验容器内晶间孔和裂缝比例的影响。为了进一步验证次声波产生的理论,建立了一个描述晶间孔隙内压力振荡的数学模型,从而解释了次声波震颤的机理。该模型证实,次声波信号的产生和特征受煤样粒间孔隙参数的控制。该模型有效模拟了不同条件下次声信号在解吸过程中的震颤特征变化,证实了粒间孔隙的物理性质是影响煤和瓦斯解吸过程中次声信号的产生及其特征的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlation Between and Mechanisms of Gas Desorption and Infrasound Signals

Coal and gas desorption, as a major form of gas energy release, is a key factor in triggering coal and gas outbursts. Therefore, studying the physical characteristics during coal and gas desorption is essential for understanding the development process of coal and gas outbursts. Based on gas dynamics during coal particle gas desorption, this study established a connection between gas desorption and infrasound signals, elaborating on the generation mechanism of infrasound signals during coal particle gas desorption and validating the feasibility of the theory through experimental data, thereby demonstrating the spontaneous occurrence of subsonic tremors during coal particle gas desorption. Combining observational data, it was found that the peak value of infrasound signals generated during desorption experiments is correlated positively with the initial pressure; while, the dominant frequency of infrasound signals is influenced by the proportion of intergranular pores and fractures within the experimental vessel. To further validate the theory of subsonic generation, a mathematical model describing pressure oscillations within intergranular pores, thereby explaining the mechanism of subsonic tremors, was established. The model confirms that the generation and characteristics of infrasound signals are controlled by the parameters of intergranular pores in coal samples. The model effectively simulates changes in the characteristics of infrasound signal tremors during desorption under different conditions, confirming that the physical properties of intergranular pores are crucial factors influencing the generation of infrasound signals and their characteristics during coal and gas desorption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
期刊最新文献
Enhanced Lithology Classification Using an Interpretable SHAP Model Integrating Semi-Supervised Contrastive Learning and Transformer with Well Logging Data A Novel Framework for Optimizing the Prediction of Areas Favorable to Porphyry-Cu Mineralization: Combination of Ant Colony and Grid Search Optimization Algorithms with Support Vector Machines Small-Sample InSAR Time-Series Data Prediction Method Based on Generative Models Exploring the Dynamic Evolution of Shallow and Deep Coal Nanopore Structures Under Acidic Fracturing Fluids Using Synchrotron Radiation Small-Angle X-Ray Scattering A Novel Approach for Enhancing Geologically Aligned Fusion of Multiple Geophysical Inverse Models in the Porphyry-Cu Deposit of Zaftak, Kerman, Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1