Lithologic Mapping in the Karamaili Ophiolite–Mélange Belt in Xinjiang, China, with Machine Learning and Integration of SDGSAT-1 TIS, Landsat-8 OLI and ASTER-GDEM
{"title":"Lithologic Mapping in the Karamaili Ophiolite–Mélange Belt in Xinjiang, China, with Machine Learning and Integration of SDGSAT-1 TIS, Landsat-8 OLI and ASTER-GDEM","authors":"Zhao Zhang, Fang Yin, Yunqiang Zhu, Lei Liu","doi":"10.1007/s11053-025-10467-0","DOIUrl":null,"url":null,"abstract":"<p>Lithological mapping is an effective tool for geological surveys and mineral exploration. However, it faces challenges in identifying complex rock types and improving classification accuracy. We mapped lithological units in the Karamaili ophiolite-mélange belt of Xinjiang using integrated machine learning algorithms, including artificial neural network (ANN), Mahalanobis distance (MD), support vector machine (SVM), and random forest (RF). These algorithms were utilized to process remote sensing datasets acquired by the Sustainable Development Science Satellite 1 Thermal Infrared Spectrometer (SDGSAT-1 TIS), Landsat-8 Operational Land Imager (OLI), and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER-GDEM). The results indicated that the overall accuracies of ANN, MD, SVM, and RF were 68.87%, 78.98%, 93.4%, and 98.36%, respectively. The SVM and RF effectively mapped the lithological units. The SDGSAT-1 TIS data helped to identify mafic–ultramafic and feldspar-rich rocks, while Landsat-8 OLI helped to successfully delineate granitoid and complex lithologies. The ASTER-GDEM data helped improve mapping accuracy by providing detailed topographic information. Thus, this study confirmed the efficacy of the implemented approaches to delineate mineralization zones and to discriminate lithological units. This study provides detailed geological data for lithological mapping and serves as a significant reference for geological surveys and environmental monitoring.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"67 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-025-10467-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithological mapping is an effective tool for geological surveys and mineral exploration. However, it faces challenges in identifying complex rock types and improving classification accuracy. We mapped lithological units in the Karamaili ophiolite-mélange belt of Xinjiang using integrated machine learning algorithms, including artificial neural network (ANN), Mahalanobis distance (MD), support vector machine (SVM), and random forest (RF). These algorithms were utilized to process remote sensing datasets acquired by the Sustainable Development Science Satellite 1 Thermal Infrared Spectrometer (SDGSAT-1 TIS), Landsat-8 Operational Land Imager (OLI), and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER-GDEM). The results indicated that the overall accuracies of ANN, MD, SVM, and RF were 68.87%, 78.98%, 93.4%, and 98.36%, respectively. The SVM and RF effectively mapped the lithological units. The SDGSAT-1 TIS data helped to identify mafic–ultramafic and feldspar-rich rocks, while Landsat-8 OLI helped to successfully delineate granitoid and complex lithologies. The ASTER-GDEM data helped improve mapping accuracy by providing detailed topographic information. Thus, this study confirmed the efficacy of the implemented approaches to delineate mineralization zones and to discriminate lithological units. This study provides detailed geological data for lithological mapping and serves as a significant reference for geological surveys and environmental monitoring.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.