用于化学防护的弹性手套上的多功能石墨烯基纹理涂层

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Science: Nano Pub Date : 2024-11-18 DOI:10.1039/d4en00601a
Aidan Stone, Zidan Yang, Jiaman Wang, Maria Louiza Dimtsoudi, Aicha Sama, Rebecca Martin-Welp, Grey Small, Indrek Kulaots, Somnath Sengupta, Francesco Fornasiero, Robert H. Hurt
{"title":"用于化学防护的弹性手套上的多功能石墨烯基纹理涂层","authors":"Aidan Stone, Zidan Yang, Jiaman Wang, Maria Louiza Dimtsoudi, Aicha Sama, Rebecca Martin-Welp, Grey Small, Indrek Kulaots, Somnath Sengupta, Francesco Fornasiero, Robert H. Hurt","doi":"10.1039/d4en00601a","DOIUrl":null,"url":null,"abstract":"Nanotechnology offers a variety of new tools for the design of next-generation personal protective equipment (PPE). One example is the use of two-dimensional materials as coatings that enhance the performance and ergonomics of elastomeric gloves designed to protect users from hazardous chemicals. Desirable features in such coatings may include molecular barrier function, liquid droplet repellency, stretchability for compatibility with the elastomer, breathability, and an ultrathin profile that preserves the user's manual dexterity and tactile sensation. The present work explores the potential of engineered graphene-based films with out-of-plane texturing as a novel platform to meet these multifold requirements. Graphene-based films in different formulations were fabricated from water-borne inks by vacuum filtration and solution casting methods on glove-derived nitrile rubber substrates. The various coatings were then subjected to tests of molecular permeation by model volatile organic compounds, droplet contact angle, breathability, and mechanical stability during stretching and solvent immersion. The films dramatically improve the barrier properties of glove-derived nitrile. The out-of-plane graphene texturing imparts stretchability through microscale folding/unfolding, while also enhancing droplet repellency in some cases through a lotus-like roughening effect. The combined results suggest that engineered textured graphene-based films are a promising platform for creating multifunctional coatings for a next generation of chemically protective gloves and other elastomer-based PPE.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"18 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional textured graphene-based coatings on elastomeric gloves for chemical protection\",\"authors\":\"Aidan Stone, Zidan Yang, Jiaman Wang, Maria Louiza Dimtsoudi, Aicha Sama, Rebecca Martin-Welp, Grey Small, Indrek Kulaots, Somnath Sengupta, Francesco Fornasiero, Robert H. Hurt\",\"doi\":\"10.1039/d4en00601a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology offers a variety of new tools for the design of next-generation personal protective equipment (PPE). One example is the use of two-dimensional materials as coatings that enhance the performance and ergonomics of elastomeric gloves designed to protect users from hazardous chemicals. Desirable features in such coatings may include molecular barrier function, liquid droplet repellency, stretchability for compatibility with the elastomer, breathability, and an ultrathin profile that preserves the user's manual dexterity and tactile sensation. The present work explores the potential of engineered graphene-based films with out-of-plane texturing as a novel platform to meet these multifold requirements. Graphene-based films in different formulations were fabricated from water-borne inks by vacuum filtration and solution casting methods on glove-derived nitrile rubber substrates. The various coatings were then subjected to tests of molecular permeation by model volatile organic compounds, droplet contact angle, breathability, and mechanical stability during stretching and solvent immersion. The films dramatically improve the barrier properties of glove-derived nitrile. The out-of-plane graphene texturing imparts stretchability through microscale folding/unfolding, while also enhancing droplet repellency in some cases through a lotus-like roughening effect. The combined results suggest that engineered textured graphene-based films are a promising platform for creating multifunctional coatings for a next generation of chemically protective gloves and other elastomer-based PPE.\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en00601a\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00601a","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米技术为设计下一代个人防护设备(PPE)提供了多种新工具。其中一个例子是使用二维材料作为涂层,以提高弹性手套的性能和人体工学设计,从而保护使用者免受危险化学品的伤害。此类涂层的理想特性可能包括分子屏障功能、液滴排斥性、与弹性体相容的伸缩性、透气性,以及可保持使用者手部灵活性和触觉的超薄外形。本研究探索了具有平面外纹理的石墨烯基工程薄膜作为满足这些多重要求的新型平台的潜力。不同配方的石墨烯基薄膜由水性油墨通过真空过滤和溶液浇注方法在手套衍生的丁腈橡胶基底上制成。然后,对各种涂层进行了挥发性有机化合物模型分子渗透、液滴接触角、透气性以及拉伸和溶剂浸泡时的机械稳定性测试。这些薄膜极大地改善了手套腈的阻隔性能。平面外的石墨烯纹理通过微尺度的折叠/展开赋予了薄膜可拉伸性,同时在某些情况下还通过莲花状的粗糙效应增强了对液滴的阻隔性。这些综合结果表明,基于石墨烯的工程纹理薄膜是一种很有前景的平台,可用于制造下一代化学防护手套和其他基于弹性体的个人防护设备的多功能涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifunctional textured graphene-based coatings on elastomeric gloves for chemical protection
Nanotechnology offers a variety of new tools for the design of next-generation personal protective equipment (PPE). One example is the use of two-dimensional materials as coatings that enhance the performance and ergonomics of elastomeric gloves designed to protect users from hazardous chemicals. Desirable features in such coatings may include molecular barrier function, liquid droplet repellency, stretchability for compatibility with the elastomer, breathability, and an ultrathin profile that preserves the user's manual dexterity and tactile sensation. The present work explores the potential of engineered graphene-based films with out-of-plane texturing as a novel platform to meet these multifold requirements. Graphene-based films in different formulations were fabricated from water-borne inks by vacuum filtration and solution casting methods on glove-derived nitrile rubber substrates. The various coatings were then subjected to tests of molecular permeation by model volatile organic compounds, droplet contact angle, breathability, and mechanical stability during stretching and solvent immersion. The films dramatically improve the barrier properties of glove-derived nitrile. The out-of-plane graphene texturing imparts stretchability through microscale folding/unfolding, while also enhancing droplet repellency in some cases through a lotus-like roughening effect. The combined results suggest that engineered textured graphene-based films are a promising platform for creating multifunctional coatings for a next generation of chemically protective gloves and other elastomer-based PPE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
期刊最新文献
Optimizing oxygen vacancy concentration and electronic transport processes in a MnxCo/CeO2 nanoreactor: regulation mechanism of the radical to non-radical pathway Electrochemical investigation of an antipyretic drug in plant extracts and environmental samples at the O-MWCNT/CuO nanostructure modified glassy carbon electrode Bandgap-Engineered In2S3 Quantum Dots Anchored on Oxygen-Doped g-C3N4: Forging a Dynamic n-n Heterojunction for Enhanced Persulfate Activation and Degradation of Metronidazole Nanotechnology for oil spill response and cleanup in coastal regions Synergistic effect of foliar exposure to TiO2 nanoparticles and planting density modulates the metabolite profile and transcription to alleviate cadmium induced phytotoxicity to wheat (Triticum aestivum L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1