D. Narsimulu, Yuvaraj Subramanian, Rajesh Rajagopal, Kwang-Sun Ryu
{"title":"可提高全固态锂离子电池导电性和空气稳定性的含氧 Li3PS4 电解质","authors":"D. Narsimulu, Yuvaraj Subramanian, Rajesh Rajagopal, Kwang-Sun Ryu","doi":"10.1016/j.electacta.2024.145382","DOIUrl":null,"url":null,"abstract":"All solid-state Lithium–ion battery (ASSLB) is a promising energy storage device, owing to its high-energy density and safety. In this work, we report a Li<sub>3</sub>PS<sub>1–x</sub>O<sub>x</sub> by O-doped β–Li<sub>3</sub>PS<sub>4</sub> using planetary ball-milling method. As-prepared Li<sub>3</sub>PS<sub>1–x</sub>O<sub>x</sub> is utilized as a solid electrolyte (SE) for the ASSLB. Experimental observation including electrochemical impedance spectroscopy (EIS), air stability, and electrochemical tests reveal that the small amount of O-doping into β–Li<sub>3</sub>PS<sub>4</sub> can abruptly improve the ionic conductivity, air stability, and electrochemical properties. <em>x=</em>0.2 amount of O-doping (Li<sub>3</sub>PS<sub>3.8</sub>O<sub>0.2</sub>) exhibits high ionic conductivity of 1.13 mS·cm<sup>−1</sup>, which is 2.56 times higher than that of the un-doped β–Li<sub>3</sub>PS<sub>4</sub> (0.44 mS·cm<sup>−1</sup>). Meanwhile, H<sub>2</sub>S suppression of Li<sub>3</sub>PS<sub>3.8</sub>O<sub>0.2</sub> is 10 times higher than that of the β–Li<sub>3</sub>PS<sub>4</sub>. Different kinds of anode material (Li, In, and Li–In) for the Li<sub>3</sub>PS<sub>3.8</sub>O<sub>0.2</sub> glass–ceramic SE with the Li (Ni<sub>0</sub>.<sub>8</sub>Co<sub>0</sub>.<sub>1</sub>Mn<sub>0.1</sub>)O<sub>2</sub> (NCM811) as cathode is proposed for the fabrication of the ASSLB cell. The NCM811/Li<sub>3</sub>PS<sub>3.8</sub>O<sub>0.2</sub>/Li–In delivered higher reversible capacity and better rate performances than the NCM811/Li<sub>3</sub>PS<sub>4</sub>/Li–In ASSLB, owing to O-incorporation. These results reveal that the partial replacement of S<sup>2−</sup> with O<sup>2−</sup> could improve the ionic conductivity, air stability, and improve the electrochemical performances of β–Li<sub>3</sub>PS<sub>4</sub>.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"11 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygenated Li3PS4 Electrolyte with improved Conductivity and Air Stability for All-Solid-State Li–ion Batteries\",\"authors\":\"D. Narsimulu, Yuvaraj Subramanian, Rajesh Rajagopal, Kwang-Sun Ryu\",\"doi\":\"10.1016/j.electacta.2024.145382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All solid-state Lithium–ion battery (ASSLB) is a promising energy storage device, owing to its high-energy density and safety. In this work, we report a Li<sub>3</sub>PS<sub>1–x</sub>O<sub>x</sub> by O-doped β–Li<sub>3</sub>PS<sub>4</sub> using planetary ball-milling method. As-prepared Li<sub>3</sub>PS<sub>1–x</sub>O<sub>x</sub> is utilized as a solid electrolyte (SE) for the ASSLB. Experimental observation including electrochemical impedance spectroscopy (EIS), air stability, and electrochemical tests reveal that the small amount of O-doping into β–Li<sub>3</sub>PS<sub>4</sub> can abruptly improve the ionic conductivity, air stability, and electrochemical properties. <em>x=</em>0.2 amount of O-doping (Li<sub>3</sub>PS<sub>3.8</sub>O<sub>0.2</sub>) exhibits high ionic conductivity of 1.13 mS·cm<sup>−1</sup>, which is 2.56 times higher than that of the un-doped β–Li<sub>3</sub>PS<sub>4</sub> (0.44 mS·cm<sup>−1</sup>). Meanwhile, H<sub>2</sub>S suppression of Li<sub>3</sub>PS<sub>3.8</sub>O<sub>0.2</sub> is 10 times higher than that of the β–Li<sub>3</sub>PS<sub>4</sub>. Different kinds of anode material (Li, In, and Li–In) for the Li<sub>3</sub>PS<sub>3.8</sub>O<sub>0.2</sub> glass–ceramic SE with the Li (Ni<sub>0</sub>.<sub>8</sub>Co<sub>0</sub>.<sub>1</sub>Mn<sub>0.1</sub>)O<sub>2</sub> (NCM811) as cathode is proposed for the fabrication of the ASSLB cell. The NCM811/Li<sub>3</sub>PS<sub>3.8</sub>O<sub>0.2</sub>/Li–In delivered higher reversible capacity and better rate performances than the NCM811/Li<sub>3</sub>PS<sub>4</sub>/Li–In ASSLB, owing to O-incorporation. These results reveal that the partial replacement of S<sup>2−</sup> with O<sup>2−</sup> could improve the ionic conductivity, air stability, and improve the electrochemical performances of β–Li<sub>3</sub>PS<sub>4</sub>.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2024.145382\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145382","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Oxygenated Li3PS4 Electrolyte with improved Conductivity and Air Stability for All-Solid-State Li–ion Batteries
All solid-state Lithium–ion battery (ASSLB) is a promising energy storage device, owing to its high-energy density and safety. In this work, we report a Li3PS1–xOx by O-doped β–Li3PS4 using planetary ball-milling method. As-prepared Li3PS1–xOx is utilized as a solid electrolyte (SE) for the ASSLB. Experimental observation including electrochemical impedance spectroscopy (EIS), air stability, and electrochemical tests reveal that the small amount of O-doping into β–Li3PS4 can abruptly improve the ionic conductivity, air stability, and electrochemical properties. x=0.2 amount of O-doping (Li3PS3.8O0.2) exhibits high ionic conductivity of 1.13 mS·cm−1, which is 2.56 times higher than that of the un-doped β–Li3PS4 (0.44 mS·cm−1). Meanwhile, H2S suppression of Li3PS3.8O0.2 is 10 times higher than that of the β–Li3PS4. Different kinds of anode material (Li, In, and Li–In) for the Li3PS3.8O0.2 glass–ceramic SE with the Li (Ni0.8Co0.1Mn0.1)O2 (NCM811) as cathode is proposed for the fabrication of the ASSLB cell. The NCM811/Li3PS3.8O0.2/Li–In delivered higher reversible capacity and better rate performances than the NCM811/Li3PS4/Li–In ASSLB, owing to O-incorporation. These results reveal that the partial replacement of S2− with O2− could improve the ionic conductivity, air stability, and improve the electrochemical performances of β–Li3PS4.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.