中国胶州湾海水和沉积物中纳米二氧化钛颗粒的分布与来源

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2024-11-19 DOI:10.1016/j.jhazmat.2024.136576
Ronggang Zheng, Liuyang Li, Zhan Wu, Anran Xu, Haoming Xu, Zhineng Hao, Sujuan Yu, Yaqi Cai, Jingfu Liu
{"title":"中国胶州湾海水和沉积物中纳米二氧化钛颗粒的分布与来源","authors":"Ronggang Zheng, Liuyang Li, Zhan Wu, Anran Xu, Haoming Xu, Zhineng Hao, Sujuan Yu, Yaqi Cai, Jingfu Liu","doi":"10.1016/j.jhazmat.2024.136576","DOIUrl":null,"url":null,"abstract":"The widespread use of titanium dioxide nanoparticles (TiO<sub>2</sub>NPs) and their potential adverse effects on the ecosystems have raised significant concerns. Limitations in detection methods and insufficient data on their environmental concentrations, especially in marine systems, hinder the accurate risk assessment. Herein, a robust method for the analysis of TiO<sub>2</sub>NPs in marine sediment is developed, with a detection limit of 0.09<!-- --> <!-- -->μg/g. The spatial distribution of TiO<sub>2</sub>NPs in seawater and sediments in Jiaozhou Bay was investigated. High concentrations of TiO<sub>2</sub>NPs in seawater were distributed in the northeastern region, near river inlets and sea-crossing bridges. By using the proposed method, the mass concentrations of TiO<sub>2</sub>NPs in the Jiaozhou Bay sediments were first reported, ranging from 0.697 to 2.44<!-- --> <!-- -->mg/g. There was no positive correlation between the distribution of TiO<sub>2</sub>NPs in seawater and sediment. The Ti/Nb ratio of TiO<sub>2</sub>NPs was used to distinguish whether TiO<sub>2</sub>NPs were sourced from the background or anthropogenic inputs. Similar distribution trends of Ti/Nb ratios in seawater and sediment suggest that significant engineered TiO<sub>2</sub>NPs were transferred from high-salinity seawater to sediment via agglomeration and sedimentation. Industrial discharges and bridge runoff may be primary contributors of engineered TiO<sub>2</sub>NPs. This study provides a reliable method for the analysis of TiO<sub>2</sub>NPs in marine sediment, which would contribute to tracking the mobility of TiO<sub>2</sub>NPs in the marine system. The data on the spatial distribution and possible sources of TiO<sub>2</sub>NPs in Jiaozhou Bay also benefit the risk assessment and control.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"11 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution and source of titanium dioxide nanoparticles in seawater and sediment from Jiaozhou Bay, China\",\"authors\":\"Ronggang Zheng, Liuyang Li, Zhan Wu, Anran Xu, Haoming Xu, Zhineng Hao, Sujuan Yu, Yaqi Cai, Jingfu Liu\",\"doi\":\"10.1016/j.jhazmat.2024.136576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread use of titanium dioxide nanoparticles (TiO<sub>2</sub>NPs) and their potential adverse effects on the ecosystems have raised significant concerns. Limitations in detection methods and insufficient data on their environmental concentrations, especially in marine systems, hinder the accurate risk assessment. Herein, a robust method for the analysis of TiO<sub>2</sub>NPs in marine sediment is developed, with a detection limit of 0.09<!-- --> <!-- -->μg/g. The spatial distribution of TiO<sub>2</sub>NPs in seawater and sediments in Jiaozhou Bay was investigated. High concentrations of TiO<sub>2</sub>NPs in seawater were distributed in the northeastern region, near river inlets and sea-crossing bridges. By using the proposed method, the mass concentrations of TiO<sub>2</sub>NPs in the Jiaozhou Bay sediments were first reported, ranging from 0.697 to 2.44<!-- --> <!-- -->mg/g. There was no positive correlation between the distribution of TiO<sub>2</sub>NPs in seawater and sediment. The Ti/Nb ratio of TiO<sub>2</sub>NPs was used to distinguish whether TiO<sub>2</sub>NPs were sourced from the background or anthropogenic inputs. Similar distribution trends of Ti/Nb ratios in seawater and sediment suggest that significant engineered TiO<sub>2</sub>NPs were transferred from high-salinity seawater to sediment via agglomeration and sedimentation. Industrial discharges and bridge runoff may be primary contributors of engineered TiO<sub>2</sub>NPs. This study provides a reliable method for the analysis of TiO<sub>2</sub>NPs in marine sediment, which would contribute to tracking the mobility of TiO<sub>2</sub>NPs in the marine system. The data on the spatial distribution and possible sources of TiO<sub>2</sub>NPs in Jiaozhou Bay also benefit the risk assessment and control.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136576\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136576","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧化钛纳米粒子(TiO2NPs)的广泛使用及其对生态系统的潜在不利影响引起了人们的极大关注。检测方法的局限性及其环境浓度数据的不足(尤其是在海洋系统中)阻碍了准确的风险评估。本文开发了一种用于分析海洋沉积物中 TiO2NPs 的可靠方法,其检测限为 0.09 μg/g。研究了胶州湾海水和沉积物中 TiO2NPs 的空间分布。海水中高浓度的 TiO2NPs 分布在东北部地区、入海口和跨海大桥附近。利用所提出的方法,首次报告了胶州湾沉积物中 TiO2NPs 的质量浓度,范围为 0.697 至 2.44 mg/g。海水和沉积物中 TiO2NPs 的分布不存在正相关。TiO2NPs 的 Ti/Nb 比率被用来区分 TiO2NPs 是来自本底还是人为输入。海水和沉积物中 Ti/Nb 比率的相似分布趋势表明,大量的人造 TiO2NPs 通过团聚和沉积作用从高盐度海水转移到了沉积物中。工业排放物和桥梁径流可能是工程 TiO2NPs 的主要来源。这项研究为分析海洋沉积物中的 TiO2NPs 提供了一种可靠的方法,有助于跟踪 TiO2NPs 在海洋系统中的流动性。有关胶州湾 TiO2NPs 空间分布和可能来源的数据也有利于风险评估和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distribution and source of titanium dioxide nanoparticles in seawater and sediment from Jiaozhou Bay, China
The widespread use of titanium dioxide nanoparticles (TiO2NPs) and their potential adverse effects on the ecosystems have raised significant concerns. Limitations in detection methods and insufficient data on their environmental concentrations, especially in marine systems, hinder the accurate risk assessment. Herein, a robust method for the analysis of TiO2NPs in marine sediment is developed, with a detection limit of 0.09 μg/g. The spatial distribution of TiO2NPs in seawater and sediments in Jiaozhou Bay was investigated. High concentrations of TiO2NPs in seawater were distributed in the northeastern region, near river inlets and sea-crossing bridges. By using the proposed method, the mass concentrations of TiO2NPs in the Jiaozhou Bay sediments were first reported, ranging from 0.697 to 2.44 mg/g. There was no positive correlation between the distribution of TiO2NPs in seawater and sediment. The Ti/Nb ratio of TiO2NPs was used to distinguish whether TiO2NPs were sourced from the background or anthropogenic inputs. Similar distribution trends of Ti/Nb ratios in seawater and sediment suggest that significant engineered TiO2NPs were transferred from high-salinity seawater to sediment via agglomeration and sedimentation. Industrial discharges and bridge runoff may be primary contributors of engineered TiO2NPs. This study provides a reliable method for the analysis of TiO2NPs in marine sediment, which would contribute to tracking the mobility of TiO2NPs in the marine system. The data on the spatial distribution and possible sources of TiO2NPs in Jiaozhou Bay also benefit the risk assessment and control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Machine Learning-Driven Fluorescent Sensor Array Using Aqueous CsPbBr3 Perovskite Quantum Dots for Rapid Detection and Sterilization of Foodborne Pathogens In situ images of Cd2+ in rice reveal Cd2+ protective mechanism using DNAzyme fluorescent probe Spectral Fingerprints of DOM-Tungsten Interactions: Linking Molecular Binding to Conformational Changes Heavy metals release in lead-zinc tailings: Effects of weathering and acid rain Insights into the photoaging behavior of biodegradable and nondegradable microplastics: spectroscopic and molecular characteristics of dissolved organic matter release
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1