用于准确检测 PCB 缺陷的自适应缺陷感知注意力网络

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Instrumentation and Measurement Pub Date : 2024-11-07 DOI:10.1109/TIM.2024.3488158
Xiang Liu
{"title":"用于准确检测 PCB 缺陷的自适应缺陷感知注意力网络","authors":"Xiang Liu","doi":"10.1109/TIM.2024.3488158","DOIUrl":null,"url":null,"abstract":"Defect detection is a critical component of quality control in the manufacturing of printed circuit boards (PCBs). However, accurately detecting PCB defects is challenging because they are very small and inconspicuous. In this article, an adaptive defect-aware attention network (ADANet) is proposed for PCB defect detection, and it contains two main modules: small defect preserving and location (SDPL) and defect segmentation prediction (DSP), where the SDPL module is designed to extract the high-resolution and multiscale defect feature representations to avoid the loss of small defects caused by model depth and then locate their positions with a deformable Transformer, and the DSP module is developed to predict their categories and masks. Experimental results conducted on two PCB datasets show that the proposed ADANet can surpass state-of-the-art approaches and achieve high performance in multiscale defect classification and detection results.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"73 ","pages":"1-11"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Defect-Aware Attention Network for Accurate PCB-Defect Detection\",\"authors\":\"Xiang Liu\",\"doi\":\"10.1109/TIM.2024.3488158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defect detection is a critical component of quality control in the manufacturing of printed circuit boards (PCBs). However, accurately detecting PCB defects is challenging because they are very small and inconspicuous. In this article, an adaptive defect-aware attention network (ADANet) is proposed for PCB defect detection, and it contains two main modules: small defect preserving and location (SDPL) and defect segmentation prediction (DSP), where the SDPL module is designed to extract the high-resolution and multiscale defect feature representations to avoid the loss of small defects caused by model depth and then locate their positions with a deformable Transformer, and the DSP module is developed to predict their categories and masks. Experimental results conducted on two PCB datasets show that the proposed ADANet can surpass state-of-the-art approaches and achieve high performance in multiscale defect classification and detection results.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"73 \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10747192/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10747192/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

缺陷检测是印刷电路板(PCB)制造过程中质量控制的重要组成部分。然而,由于印刷电路板缺陷非常小且不明显,因此准确检测印刷电路板缺陷具有挑战性。本文提出了一种用于 PCB 缺陷检测的自适应缺陷感知注意力网络(ADANet),它包含两个主要模块:小缺陷保存与定位(SDPL)和缺陷分割预测(DSP),其中 SDPL 模块旨在提取高分辨率和多尺度缺陷特征表征,以避免模型深度造成的小缺陷损失,然后利用可变形变压器定位其位置,而 DSP 模块则用于预测其类别和掩膜。在两个印刷电路板数据集上进行的实验结果表明,所提出的 ADANet 可以超越最先进的方法,在多尺度缺陷分类和检测结果方面实现高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive Defect-Aware Attention Network for Accurate PCB-Defect Detection
Defect detection is a critical component of quality control in the manufacturing of printed circuit boards (PCBs). However, accurately detecting PCB defects is challenging because they are very small and inconspicuous. In this article, an adaptive defect-aware attention network (ADANet) is proposed for PCB defect detection, and it contains two main modules: small defect preserving and location (SDPL) and defect segmentation prediction (DSP), where the SDPL module is designed to extract the high-resolution and multiscale defect feature representations to avoid the loss of small defects caused by model depth and then locate their positions with a deformable Transformer, and the DSP module is developed to predict their categories and masks. Experimental results conducted on two PCB datasets show that the proposed ADANet can surpass state-of-the-art approaches and achieve high performance in multiscale defect classification and detection results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
期刊最新文献
Errata to “A Spherical Coil Array for the Calibration of Whole-Head Magnetoencephalograph Systems” Adaptive EPI-Matching Cost for Light Field Disparity Estimation Robust Surface Area Measurement of Unorganized Point Clouds Based on Multiscale Supervoxel Segmentation Optimized Fuzzy Slope Entropy: A Complexity Measure for Nonlinear Time Series A Multidepth Step-Training Convolutional Neural Network for Power Machinery Fault Diagnosis Under Variable Loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1