Wesam Dawam, Shimaa Edris, Ali Osman, Mai Elsheikh, Ahmed Hamad, Mahmoud Sitohy, Islam Sabeq
{"title":"豇豆豆科植物防腐剂对牛肋条肉的影响及对抗生素耐药性食源性致病菌的影响","authors":"Wesam Dawam, Shimaa Edris, Ali Osman, Mai Elsheikh, Ahmed Hamad, Mahmoud Sitohy, Islam Sabeq","doi":"10.1038/s41538-024-00337-z","DOIUrl":null,"url":null,"abstract":"The current study assessed the minimum inhibitory concentration (MIC) of Cowpea-legumin (CPL) against antibiotic-resistant foodborne pathogens (FBP), the consequences on Longissimus thoracis et lumborum (LTL) quality and shelf-life, and the growth curves of inoculated FBPs. Fresh LTL-steaks were enriched with either 0.5 mg/g (CPL0.5) or 1 mg/g (CPL1) and evaluated over 15 chilling-days at 4 °C. Antibiotic-resistant Salmonella enterica and Escherichia coli were inhibited by 25 and 3.125 mg/mL, respectively, while antibiotic-susceptible FBPs and antibiotic-resistant Staphylococcus aureus were suppressed by 0.1 mg/mL CPL. CPL1-fortification produced fully tender LTL that was initially yellower/less red than the control, then turned brighter red with storage. CPL demonstrated promising dose-dependent antioxidant, and antibacterial activities against native spoilage and antibiotic-resistant/susceptible FBPs. CPL’s proteinaceous composition, besides sample size, might impact stability. Conclusively, CPL demonstrated promising preservative stability in fresh meat for a maximum of fifteen-days and represents a viable antimicrobial alternative in battle against antibiotic-resistance.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-11"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-024-00337-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Cowpea legumin preservative impacts on beef ribeye and implications on antibiotic resistant food borne pathogens\",\"authors\":\"Wesam Dawam, Shimaa Edris, Ali Osman, Mai Elsheikh, Ahmed Hamad, Mahmoud Sitohy, Islam Sabeq\",\"doi\":\"10.1038/s41538-024-00337-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study assessed the minimum inhibitory concentration (MIC) of Cowpea-legumin (CPL) against antibiotic-resistant foodborne pathogens (FBP), the consequences on Longissimus thoracis et lumborum (LTL) quality and shelf-life, and the growth curves of inoculated FBPs. Fresh LTL-steaks were enriched with either 0.5 mg/g (CPL0.5) or 1 mg/g (CPL1) and evaluated over 15 chilling-days at 4 °C. Antibiotic-resistant Salmonella enterica and Escherichia coli were inhibited by 25 and 3.125 mg/mL, respectively, while antibiotic-susceptible FBPs and antibiotic-resistant Staphylococcus aureus were suppressed by 0.1 mg/mL CPL. CPL1-fortification produced fully tender LTL that was initially yellower/less red than the control, then turned brighter red with storage. CPL demonstrated promising dose-dependent antioxidant, and antibacterial activities against native spoilage and antibiotic-resistant/susceptible FBPs. CPL’s proteinaceous composition, besides sample size, might impact stability. Conclusively, CPL demonstrated promising preservative stability in fresh meat for a maximum of fifteen-days and represents a viable antimicrobial alternative in battle against antibiotic-resistance.\",\"PeriodicalId\":19367,\"journal\":{\"name\":\"NPJ Science of Food\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41538-024-00337-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Science of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.nature.com/articles/s41538-024-00337-z\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41538-024-00337-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Cowpea legumin preservative impacts on beef ribeye and implications on antibiotic resistant food borne pathogens
The current study assessed the minimum inhibitory concentration (MIC) of Cowpea-legumin (CPL) against antibiotic-resistant foodborne pathogens (FBP), the consequences on Longissimus thoracis et lumborum (LTL) quality and shelf-life, and the growth curves of inoculated FBPs. Fresh LTL-steaks were enriched with either 0.5 mg/g (CPL0.5) or 1 mg/g (CPL1) and evaluated over 15 chilling-days at 4 °C. Antibiotic-resistant Salmonella enterica and Escherichia coli were inhibited by 25 and 3.125 mg/mL, respectively, while antibiotic-susceptible FBPs and antibiotic-resistant Staphylococcus aureus were suppressed by 0.1 mg/mL CPL. CPL1-fortification produced fully tender LTL that was initially yellower/less red than the control, then turned brighter red with storage. CPL demonstrated promising dose-dependent antioxidant, and antibacterial activities against native spoilage and antibiotic-resistant/susceptible FBPs. CPL’s proteinaceous composition, besides sample size, might impact stability. Conclusively, CPL demonstrated promising preservative stability in fresh meat for a maximum of fifteen-days and represents a viable antimicrobial alternative in battle against antibiotic-resistance.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.