Quanhong Chang, Wei Chen, Fudu Xing, Wanhua Li, Xun Peng, Weijie Du, Huishan Wang, Guina Xiao, Lei Huang
{"title":"基于离子动态电容实现光电调制的 MXene-TiO2 异质结构离子电子神经器件","authors":"Quanhong Chang, Wei Chen, Fudu Xing, Wanhua Li, Xun Peng, Weijie Du, Huishan Wang, Guina Xiao, Lei Huang","doi":"10.1063/5.0232001","DOIUrl":null,"url":null,"abstract":"The development of neuromorphic systems necessitates the use of memcapacitors that can adapt to optoelectronic modulation. Two-dimensional (2D) materials with atomically thin features and their derived heterostructures are able to allow for controlling local transfer of charge carrier but reports on 2D materials-enabled capacitive-type photoelectric synapses have not been experimentally exploited yet. Herein, MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation are designed. According to the electrochemical insight, under UV light illustration, photoexcited electrons in TiO2 flow to MXene, leading to the localized accumulation of electrons as the trapping center and thus inducing the embedding of H+ for participating in the pseudo-intercalation. On removing the UV light, a part of trapped H+ are not instantly returned to the initial state. As a result, this memcapacitor features hysteresis ion-dynamic capacitance under optoelectronic modulation. Through assessing its applicability to neuromorphic computing, this memcapacitor achieves the high recognition accuracy (93.5%) of handwritten digits by recognizing and sharpening the input signal trajectory.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"14 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation\",\"authors\":\"Quanhong Chang, Wei Chen, Fudu Xing, Wanhua Li, Xun Peng, Weijie Du, Huishan Wang, Guina Xiao, Lei Huang\",\"doi\":\"10.1063/5.0232001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of neuromorphic systems necessitates the use of memcapacitors that can adapt to optoelectronic modulation. Two-dimensional (2D) materials with atomically thin features and their derived heterostructures are able to allow for controlling local transfer of charge carrier but reports on 2D materials-enabled capacitive-type photoelectric synapses have not been experimentally exploited yet. Herein, MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation are designed. According to the electrochemical insight, under UV light illustration, photoexcited electrons in TiO2 flow to MXene, leading to the localized accumulation of electrons as the trapping center and thus inducing the embedding of H+ for participating in the pseudo-intercalation. On removing the UV light, a part of trapped H+ are not instantly returned to the initial state. As a result, this memcapacitor features hysteresis ion-dynamic capacitance under optoelectronic modulation. Through assessing its applicability to neuromorphic computing, this memcapacitor achieves the high recognition accuracy (93.5%) of handwritten digits by recognizing and sharpening the input signal trajectory.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0232001\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0232001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation
The development of neuromorphic systems necessitates the use of memcapacitors that can adapt to optoelectronic modulation. Two-dimensional (2D) materials with atomically thin features and their derived heterostructures are able to allow for controlling local transfer of charge carrier but reports on 2D materials-enabled capacitive-type photoelectric synapses have not been experimentally exploited yet. Herein, MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation are designed. According to the electrochemical insight, under UV light illustration, photoexcited electrons in TiO2 flow to MXene, leading to the localized accumulation of electrons as the trapping center and thus inducing the embedding of H+ for participating in the pseudo-intercalation. On removing the UV light, a part of trapped H+ are not instantly returned to the initial state. As a result, this memcapacitor features hysteresis ion-dynamic capacitance under optoelectronic modulation. Through assessing its applicability to neuromorphic computing, this memcapacitor achieves the high recognition accuracy (93.5%) of handwritten digits by recognizing and sharpening the input signal trajectory.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.