{"title":"多模态类肤穿戴式传感器的最新进展","authors":"Shuying Wu, Zhao Sha, Liao Wu, Hoang-Phuong Phan, Shuai He, Jianbo Tang, Jiangtao Xu, Dewei Chu, Chun H. Wang, Shuhua Peng","doi":"10.1063/5.0217328","DOIUrl":null,"url":null,"abstract":"Wearable sensors capable of simultaneous monitoring of multiple physiological markers have the potential to dramatically reduce healthcare cost through early detection of diseases and accelerating rehabilitation processes. These skin-like sensors can deliver significant benefits thanks to their ability to continuously track various physiological indicators over extended periods. However, due to the high sensitivities of soft sensors to multiple stimuli, decoupling the effects of various physical stimuli associated with accurately pinpointing the contributions of individual physiological markers remains a huge challenge. This article aims to provide a comprehensive review of recent advances in multifunctional, skin-like wearable sensors, with a particular emphasis on the mechanisms of signal transduction, microengineering designs, and their diverse applications in both health monitoring and human–machine interactions. It elaborates on the operational principles of various wearable sensors, such as triboelectric, resistive, piezoelectric, and capacitive sensors, each uniquely adept at detecting a range of stimuli. This article also examines recent advances in conceptualizations and methodologies for isolating specific stimuli from the mix of multiple physiological signals. Furthermore, this review highlights potential applications of these multimodal skin-like wearable sensors. Finally, opportunities and challenges facing multimodal wearable sensors are also discussed, exploring their potential in wearable intelligent systems tailored for diverse applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"126 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in multimodal skin-like wearable sensors\",\"authors\":\"Shuying Wu, Zhao Sha, Liao Wu, Hoang-Phuong Phan, Shuai He, Jianbo Tang, Jiangtao Xu, Dewei Chu, Chun H. Wang, Shuhua Peng\",\"doi\":\"10.1063/5.0217328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable sensors capable of simultaneous monitoring of multiple physiological markers have the potential to dramatically reduce healthcare cost through early detection of diseases and accelerating rehabilitation processes. These skin-like sensors can deliver significant benefits thanks to their ability to continuously track various physiological indicators over extended periods. However, due to the high sensitivities of soft sensors to multiple stimuli, decoupling the effects of various physical stimuli associated with accurately pinpointing the contributions of individual physiological markers remains a huge challenge. This article aims to provide a comprehensive review of recent advances in multifunctional, skin-like wearable sensors, with a particular emphasis on the mechanisms of signal transduction, microengineering designs, and their diverse applications in both health monitoring and human–machine interactions. It elaborates on the operational principles of various wearable sensors, such as triboelectric, resistive, piezoelectric, and capacitive sensors, each uniquely adept at detecting a range of stimuli. This article also examines recent advances in conceptualizations and methodologies for isolating specific stimuli from the mix of multiple physiological signals. Furthermore, this review highlights potential applications of these multimodal skin-like wearable sensors. Finally, opportunities and challenges facing multimodal wearable sensors are also discussed, exploring their potential in wearable intelligent systems tailored for diverse applications.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0217328\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0217328","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Recent advances in multimodal skin-like wearable sensors
Wearable sensors capable of simultaneous monitoring of multiple physiological markers have the potential to dramatically reduce healthcare cost through early detection of diseases and accelerating rehabilitation processes. These skin-like sensors can deliver significant benefits thanks to their ability to continuously track various physiological indicators over extended periods. However, due to the high sensitivities of soft sensors to multiple stimuli, decoupling the effects of various physical stimuli associated with accurately pinpointing the contributions of individual physiological markers remains a huge challenge. This article aims to provide a comprehensive review of recent advances in multifunctional, skin-like wearable sensors, with a particular emphasis on the mechanisms of signal transduction, microengineering designs, and their diverse applications in both health monitoring and human–machine interactions. It elaborates on the operational principles of various wearable sensors, such as triboelectric, resistive, piezoelectric, and capacitive sensors, each uniquely adept at detecting a range of stimuli. This article also examines recent advances in conceptualizations and methodologies for isolating specific stimuli from the mix of multiple physiological signals. Furthermore, this review highlights potential applications of these multimodal skin-like wearable sensors. Finally, opportunities and challenges facing multimodal wearable sensors are also discussed, exploring their potential in wearable intelligent systems tailored for diverse applications.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.