由与碳纳米管耦合的 MOF 生成的 CoFe-LDH 纳米笼作为锂-O2 电池的阴极催化剂

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-11-19 DOI:10.1016/j.electacta.2024.145384
Yongming Zhu, Shan Zhi, Bangqi Wan
{"title":"由与碳纳米管耦合的 MOF 生成的 CoFe-LDH 纳米笼作为锂-O2 电池的阴极催化剂","authors":"Yongming Zhu,&nbsp;Shan Zhi,&nbsp;Bangqi Wan","doi":"10.1016/j.electacta.2024.145384","DOIUrl":null,"url":null,"abstract":"<div><div>Li-O<sub>2</sub> batteries(LOBs)have garnered substantial interest owing to their exceptional energy density. Nevertheless, the slow kinetics of discharge and recharge significantly hinder their commercial application. Herein, a one-step hydrothermal process was employed to anchor metal-organic framework (MOF)-derived CoFe-layered double hydroxides (CoFe-LDH) hollow nanocages onto carbon nanotubes, thereby improving the electrochemical efficiency of LOBs. The synthesized nanocomposite resulted in an increased specific surface area, providing more catalytically active sites and rapid diffusion pathways for lithium ions and oxygen. Owing to a synergistic effect, the CoFe-LDH@CNTs electrode, when used as a cathode in LOBs, exhibited a high initial discharge capacity (32.8 Ah g<sup>−1</sup> at 500 mA g<sup>−1</sup>) and maintained 176 stable cycles at 500 mA g<sup>−1</sup> with a limited capacity of 500 mAh g<sup>−1</sup>. Furthermore, the optimized d-orbital electron structure and d-band center were confirmed by density functional theory (DFT) calculations, reducing the reaction barrier and improving reactant adsorption, thus accelerating the kinetics of the catalytic reaction. This study presents an innovative strategy for designing electrocatalysts for LOBs by integrating bimetallic MOF-derived materials with carbon-based substrates.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"511 ","pages":"Article 145384"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoFe-LDH nanocage derived from MOF coupled with CNTs as cathode catalyst for Li-O2 batteries\",\"authors\":\"Yongming Zhu,&nbsp;Shan Zhi,&nbsp;Bangqi Wan\",\"doi\":\"10.1016/j.electacta.2024.145384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Li-O<sub>2</sub> batteries(LOBs)have garnered substantial interest owing to their exceptional energy density. Nevertheless, the slow kinetics of discharge and recharge significantly hinder their commercial application. Herein, a one-step hydrothermal process was employed to anchor metal-organic framework (MOF)-derived CoFe-layered double hydroxides (CoFe-LDH) hollow nanocages onto carbon nanotubes, thereby improving the electrochemical efficiency of LOBs. The synthesized nanocomposite resulted in an increased specific surface area, providing more catalytically active sites and rapid diffusion pathways for lithium ions and oxygen. Owing to a synergistic effect, the CoFe-LDH@CNTs electrode, when used as a cathode in LOBs, exhibited a high initial discharge capacity (32.8 Ah g<sup>−1</sup> at 500 mA g<sup>−1</sup>) and maintained 176 stable cycles at 500 mA g<sup>−1</sup> with a limited capacity of 500 mAh g<sup>−1</sup>. Furthermore, the optimized d-orbital electron structure and d-band center were confirmed by density functional theory (DFT) calculations, reducing the reaction barrier and improving reactant adsorption, thus accelerating the kinetics of the catalytic reaction. This study presents an innovative strategy for designing electrocatalysts for LOBs by integrating bimetallic MOF-derived materials with carbon-based substrates.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"511 \",\"pages\":\"Article 145384\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624016207\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624016207","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

锂-氧化物电池(LOBs)因其卓越的能量密度而备受关注。然而,缓慢的放电和充电动力学极大地阻碍了它们的商业应用。本文采用一步水热法将金属有机框架(MOF)衍生的 CoFe 层状双氢氧化物(CoFe-LDH)中空纳米笼固定在碳纳米管上,从而提高了锂离子电池的电化学效率。合成的纳米复合材料增加了比表面积,为锂离子和氧气提供了更多的催化活性位点和快速扩散途径。由于协同效应,当 CoFe-LDH@CNTs 电极用作 LOB 的阴极时,显示出较高的初始放电容量(在 500 mA g-1 下为 32.8 Ah g-1),并在 500 mA g-1 下保持了 176 次稳定循环,有限容量为 500 mAh g-1。此外,密度泛函理论(DFT)计算证实了优化的 d 轨道电子结构和 d 带中心,降低了反应势垒,改善了反应物的吸附性,从而加速了催化反应的动力学过程。本研究通过将双金属 MOF 衍生材料与碳基底物相结合,提出了一种设计 LOB 电催化剂的创新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CoFe-LDH nanocage derived from MOF coupled with CNTs as cathode catalyst for Li-O2 batteries
Li-O2 batteries(LOBs)have garnered substantial interest owing to their exceptional energy density. Nevertheless, the slow kinetics of discharge and recharge significantly hinder their commercial application. Herein, a one-step hydrothermal process was employed to anchor metal-organic framework (MOF)-derived CoFe-layered double hydroxides (CoFe-LDH) hollow nanocages onto carbon nanotubes, thereby improving the electrochemical efficiency of LOBs. The synthesized nanocomposite resulted in an increased specific surface area, providing more catalytically active sites and rapid diffusion pathways for lithium ions and oxygen. Owing to a synergistic effect, the CoFe-LDH@CNTs electrode, when used as a cathode in LOBs, exhibited a high initial discharge capacity (32.8 Ah g−1 at 500 mA g−1) and maintained 176 stable cycles at 500 mA g−1 with a limited capacity of 500 mAh g−1. Furthermore, the optimized d-orbital electron structure and d-band center were confirmed by density functional theory (DFT) calculations, reducing the reaction barrier and improving reactant adsorption, thus accelerating the kinetics of the catalytic reaction. This study presents an innovative strategy for designing electrocatalysts for LOBs by integrating bimetallic MOF-derived materials with carbon-based substrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Evaluation of high-entropy (Cr, Mn, Fe, Co, Ni)-oxide nanofibers and nanoparticles as passive fillers for solid composite electrolytes Carbon nanotubes cross-linked Fe/Fe3C Nanoparticles and Fe Single Atoms as High-efficiency Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries Gold-etching redox reactions at the gold interface of an ionic liquid monitored using electrochemical surface plasmon resonance Optimizing Anode Performance of (La,Sr)1-αTi1-βNiβO3-δ in Solid Oxide Fuel Cells via Synergistic A-site Deficiency and B-site Doping Regulation Strategy Practical considerations for using redox probes in electrochemical sensor characterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1