Sigríður María Aðalsteinsdóttir, Guðmundur Sverrisson, Samuel Warren Scott, Erlend Straume, Adolph M. Bravo, Andri Stefánsson
{"title":"400-700 °C 时氯化钠在水蒸气中的溶解度","authors":"Sigríður María Aðalsteinsdóttir, Guðmundur Sverrisson, Samuel Warren Scott, Erlend Straume, Adolph M. Bravo, Andri Stefánsson","doi":"10.1016/j.gca.2024.11.002","DOIUrl":null,"url":null,"abstract":"Water significantly impacts the chemical evolution of the Earth’s crust, affecting environments from volcanic settings to hydrothermal systems. These fluids transport elements essential for geological processes, such as metal ore deposit formation. At high temperatures, as water transitions from liquid to vapor, its molecular structure changes, drastically reducing its capacity to dissolve solids and solvate ions. Here, we report experimental results of halite (NaCl<ce:inf loc=\"post\">(s)</ce:inf>) solubility in water vapor at 400–700 °C and 30–300 bar using a novel U-tube flow-through reactor system. The results show that halite solubility is low (<ce:italic>x</ce:italic><ce:inf loc=\"post\">NaCl,tot</ce:inf> = 3.2 × 10<ce:sup loc=\"post\">−9</ce:sup> to 2.9 × 10<ce:sup loc=\"post\">−4</ce:sup> mol/mol) and increases with temperature and pressure, attributed to the dissolution of NaCl followed by its hydration according to the reaction:","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"230 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solubility of NaCl in water vapor at 400–700 °C\",\"authors\":\"Sigríður María Aðalsteinsdóttir, Guðmundur Sverrisson, Samuel Warren Scott, Erlend Straume, Adolph M. Bravo, Andri Stefánsson\",\"doi\":\"10.1016/j.gca.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water significantly impacts the chemical evolution of the Earth’s crust, affecting environments from volcanic settings to hydrothermal systems. These fluids transport elements essential for geological processes, such as metal ore deposit formation. At high temperatures, as water transitions from liquid to vapor, its molecular structure changes, drastically reducing its capacity to dissolve solids and solvate ions. Here, we report experimental results of halite (NaCl<ce:inf loc=\\\"post\\\">(s)</ce:inf>) solubility in water vapor at 400–700 °C and 30–300 bar using a novel U-tube flow-through reactor system. The results show that halite solubility is low (<ce:italic>x</ce:italic><ce:inf loc=\\\"post\\\">NaCl,tot</ce:inf> = 3.2 × 10<ce:sup loc=\\\"post\\\">−9</ce:sup> to 2.9 × 10<ce:sup loc=\\\"post\\\">−4</ce:sup> mol/mol) and increases with temperature and pressure, attributed to the dissolution of NaCl followed by its hydration according to the reaction:\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"230 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gca.2024.11.002\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2024.11.002","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
水极大地影响着地壳的化学演变,影响着从火山环境到热液系统的各种环境。这些流体输送着地质过程(如金属矿床的形成)所必需的元素。在高温条件下,当水从液态转变为气态时,其分子结构会发生变化,从而大大降低其溶解固体和溶解离子的能力。在此,我们报告了在 400-700 °C 和 30-300 bar 温度条件下,使用新型 U 形管流过式反应器系统对水蒸汽中的海泡石(NaCl(s))溶解度进行实验的结果。结果表明,海卤石的溶解度较低(xNaCl,tot = 3.2 × 10-9 至 2.9 × 10-4 mol/mol),并随温度和压力的升高而增加,这归因于 NaCl 的溶解,然后根据反应进行水合:
Water significantly impacts the chemical evolution of the Earth’s crust, affecting environments from volcanic settings to hydrothermal systems. These fluids transport elements essential for geological processes, such as metal ore deposit formation. At high temperatures, as water transitions from liquid to vapor, its molecular structure changes, drastically reducing its capacity to dissolve solids and solvate ions. Here, we report experimental results of halite (NaCl(s)) solubility in water vapor at 400–700 °C and 30–300 bar using a novel U-tube flow-through reactor system. The results show that halite solubility is low (xNaCl,tot = 3.2 × 10−9 to 2.9 × 10−4 mol/mol) and increases with temperature and pressure, attributed to the dissolution of NaCl followed by its hydration according to the reaction:
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.