{"title":"A chondritic Martian mantle revealed by the heavy noble gas composition of the chassignite NWA 8694","authors":"Sandrine Péron, Sujoy Mukhopadhyay","doi":"10.1016/j.gca.2025.01.002","DOIUrl":null,"url":null,"abstract":"Accretion of volatile elements is a critical step to make a planet habitable. It is often assumed that terrestrial planets initially captured solar gases from the nebula, which are partially ingassed into their interior during the magma ocean phase, and then chondritic and/or cometary volatiles are delivered during the main accretion phase or after. Recent krypton isotopic measurements of the Martian meteorite Chassigny have however shown that chondritic volatiles were acquired on Mars in the first Myr of Solar System formation before nebular capture. Yet, Martian mantle is heterogeneous, with multiple reservoirs as evidenced with the hydrogen isotopic composition of shergottites, and it is unclear if this is also the case for noble gases. In this study, we investigate the noble gas (Ne, Ar, Kr, Xe) isotopic and elemental composition of the chassignite NWA 8694, which constitutes a link between chassignites and nakhlites, via laser step-heating in order to assess potential heterogeneities of the Martian mantle. Similar to Chassigny, we found evidence for high Ar, Kr and Xe abundances, potentially at least one order of magnitude higher than in the Earth’s mantle, in the NWA 8694 mantle source based on a low <ce:sup loc=\"post\">40</ce:sup>Ar/<ce:sup loc=\"post\">36</ce:sup>Ar ratio. We also found a chondritic component and a Martian atmospheric component in NWA 8694, the latter with fractionated Ar/Kr/Xe elemental ratios compared to Mars’ atmosphere. This Martian atmosphere component was possibly introduced through aqueous alteration by surface fluids, as observed in MIL nakhlites. The chondritic component corresponds to the composition of the NWA 8694 mantle source and hence confirms previous observation in Chassigny. A chondritic Martian mantle is in stark contrast with the presence of solar Kr and Xe in the Martian atmosphere. This suggests that chondritic volatiles were delivered to terrestrial planets in the first Myr of Solar System formation in presence of the nebula. Solar gases in the atmosphere could have been captured from the nebula afterwards or delivered by material similar to comets. If captured from the nebula, it would require the solar gases to be trapped either in polar ice caps or the regolith so as not to be lost via hydrodynamic escape after the nebula dissipates. Alternatively, delivery of solar gases associated with comets could occur after cessation of hydrodynamic escape on Mars, but the one comet (67P/C-G) that has been measured so far does not show a pure solar-like Xe and Kr isotopic composition.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"105 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2025.01.002","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accretion of volatile elements is a critical step to make a planet habitable. It is often assumed that terrestrial planets initially captured solar gases from the nebula, which are partially ingassed into their interior during the magma ocean phase, and then chondritic and/or cometary volatiles are delivered during the main accretion phase or after. Recent krypton isotopic measurements of the Martian meteorite Chassigny have however shown that chondritic volatiles were acquired on Mars in the first Myr of Solar System formation before nebular capture. Yet, Martian mantle is heterogeneous, with multiple reservoirs as evidenced with the hydrogen isotopic composition of shergottites, and it is unclear if this is also the case for noble gases. In this study, we investigate the noble gas (Ne, Ar, Kr, Xe) isotopic and elemental composition of the chassignite NWA 8694, which constitutes a link between chassignites and nakhlites, via laser step-heating in order to assess potential heterogeneities of the Martian mantle. Similar to Chassigny, we found evidence for high Ar, Kr and Xe abundances, potentially at least one order of magnitude higher than in the Earth’s mantle, in the NWA 8694 mantle source based on a low 40Ar/36Ar ratio. We also found a chondritic component and a Martian atmospheric component in NWA 8694, the latter with fractionated Ar/Kr/Xe elemental ratios compared to Mars’ atmosphere. This Martian atmosphere component was possibly introduced through aqueous alteration by surface fluids, as observed in MIL nakhlites. The chondritic component corresponds to the composition of the NWA 8694 mantle source and hence confirms previous observation in Chassigny. A chondritic Martian mantle is in stark contrast with the presence of solar Kr and Xe in the Martian atmosphere. This suggests that chondritic volatiles were delivered to terrestrial planets in the first Myr of Solar System formation in presence of the nebula. Solar gases in the atmosphere could have been captured from the nebula afterwards or delivered by material similar to comets. If captured from the nebula, it would require the solar gases to be trapped either in polar ice caps or the regolith so as not to be lost via hydrodynamic escape after the nebula dissipates. Alternatively, delivery of solar gases associated with comets could occur after cessation of hydrodynamic escape on Mars, but the one comet (67P/C-G) that has been measured so far does not show a pure solar-like Xe and Kr isotopic composition.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.