小鼠的显性阴性 Kcnd3 F227del 突变会损害 ER 和高尔基体的功能,从而导致脊髓小脑共济失调 22 型(SCA22)。

IF 5.6 2区 医学 Q1 ONCOLOGY The Journal of Pathology Pub Date : 2024-11-19 DOI:10.1002/path.6368
Hao-Chih Hung, Jia-Han Lin, Yuan-Chi Teng, Cheng-Heng Kao, Pei-Yu Wang, Bing-Wen Soong, Ting-Fen Tsai
{"title":"小鼠的显性阴性 Kcnd3 F227del 突变会损害 ER 和高尔基体的功能,从而导致脊髓小脑共济失调 22 型(SCA22)。","authors":"Hao-Chih Hung, Jia-Han Lin, Yuan-Chi Teng, Cheng-Heng Kao, Pei-Yu Wang, Bing-Wen Soong, Ting-Fen Tsai","doi":"10.1002/path.6368","DOIUrl":null,"url":null,"abstract":"<p><p>Spinocerebellar ataxia type 22 (SCA22) caused by KCND3 mutations is an autosomal dominant disorder. We established a mouse model carrying the Kcnd3 F227del mutation to study the molecular pathogenesis. Four findings were pinpointed. First, the heterozygous mice exhibited an early onset of defects in motor coordination and balance which mirror those of SCA22 patients. The degeneration and a minor loss of Purkinje cells, together with the concurrent presence of neuroinflammation, as well as the previous finding on electrophysiological changes, may all contribute to the development of the SCA22 ataxia phenotype in mice carrying the Kcnd3 F227del mutant protein. Second, the mutant protein is retained by the endoplasmic reticulum and Golgi, leading to activation of the unfolded protein response and a severe trafficking defect that affects its membrane destination. Intriguingly, profound damage of the Golgi is the earliest manifestation. Third, analysis of the transcriptome revealed that the Kcnd3 F227del mutation down-regulates a panel of genes involved in the functioning of synapses and neurogenesis which are tightly linked to the functioning of Purkinje cells. Finally, no ataxia phenotypes were detectable in knockout mice carrying a loss-of-function Kcnd3 mutation. Thus, Kcnd3 F227del is a dominant-negative mutation. This mouse model may serve as a preclinical model for exploring therapeutic strategies to treat patients. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.</p>","PeriodicalId":232,"journal":{"name":"The Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dominant negative Kcnd3 F227del mutation in mice causes spinocerebellar ataxia type 22 (SCA22) by impairing ER and Golgi functioning.\",\"authors\":\"Hao-Chih Hung, Jia-Han Lin, Yuan-Chi Teng, Cheng-Heng Kao, Pei-Yu Wang, Bing-Wen Soong, Ting-Fen Tsai\",\"doi\":\"10.1002/path.6368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinocerebellar ataxia type 22 (SCA22) caused by KCND3 mutations is an autosomal dominant disorder. We established a mouse model carrying the Kcnd3 F227del mutation to study the molecular pathogenesis. Four findings were pinpointed. First, the heterozygous mice exhibited an early onset of defects in motor coordination and balance which mirror those of SCA22 patients. The degeneration and a minor loss of Purkinje cells, together with the concurrent presence of neuroinflammation, as well as the previous finding on electrophysiological changes, may all contribute to the development of the SCA22 ataxia phenotype in mice carrying the Kcnd3 F227del mutant protein. Second, the mutant protein is retained by the endoplasmic reticulum and Golgi, leading to activation of the unfolded protein response and a severe trafficking defect that affects its membrane destination. Intriguingly, profound damage of the Golgi is the earliest manifestation. Third, analysis of the transcriptome revealed that the Kcnd3 F227del mutation down-regulates a panel of genes involved in the functioning of synapses and neurogenesis which are tightly linked to the functioning of Purkinje cells. Finally, no ataxia phenotypes were detectable in knockout mice carrying a loss-of-function Kcnd3 mutation. Thus, Kcnd3 F227del is a dominant-negative mutation. This mouse model may serve as a preclinical model for exploring therapeutic strategies to treat patients. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.</p>\",\"PeriodicalId\":232,\"journal\":{\"name\":\"The Journal of Pathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/path.6368\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/path.6368","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由 KCND3 突变引起的脊髓小脑共济失调 22 型(SCA22)是一种常染色体显性遗传疾病。我们建立了一个携带 Kcnd3 F227del 突变的小鼠模型,以研究其分子发病机制。我们得出了四项发现。首先,杂合子小鼠在运动协调和平衡方面表现出与 SCA22 患者相同的早期发病缺陷。Purkinje细胞的退化和轻微缺失,加上同时存在的神经炎症,以及之前的电生理变化发现,都可能导致携带Kcnd3 F227del突变蛋白的小鼠出现SCA22共济失调表型。其次,突变体蛋白被内质网和高尔基体截留,导致未折叠蛋白反应的激活和严重的转运缺陷,从而影响其膜的去向。耐人寻味的是,高尔基体的严重破坏是最早的表现形式。第三,转录组分析表明,Kcnd3 F227del 突变下调了一系列涉及突触功能和神经发生的基因,而突触和神经发生与浦肯野细胞的功能密切相关。最后,在携带 Kcnd3 功能缺失突变的基因敲除小鼠中检测不到共济失调表型。因此,Kcnd3 F227del 是一种显性阴性突变。该小鼠模型可作为临床前模型,用于探索治疗患者的策略。© 2024 作者。病理学杂志》由约翰威利父子有限公司代表大不列颠及爱尔兰病理学会出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dominant negative Kcnd3 F227del mutation in mice causes spinocerebellar ataxia type 22 (SCA22) by impairing ER and Golgi functioning.

Spinocerebellar ataxia type 22 (SCA22) caused by KCND3 mutations is an autosomal dominant disorder. We established a mouse model carrying the Kcnd3 F227del mutation to study the molecular pathogenesis. Four findings were pinpointed. First, the heterozygous mice exhibited an early onset of defects in motor coordination and balance which mirror those of SCA22 patients. The degeneration and a minor loss of Purkinje cells, together with the concurrent presence of neuroinflammation, as well as the previous finding on electrophysiological changes, may all contribute to the development of the SCA22 ataxia phenotype in mice carrying the Kcnd3 F227del mutant protein. Second, the mutant protein is retained by the endoplasmic reticulum and Golgi, leading to activation of the unfolded protein response and a severe trafficking defect that affects its membrane destination. Intriguingly, profound damage of the Golgi is the earliest manifestation. Third, analysis of the transcriptome revealed that the Kcnd3 F227del mutation down-regulates a panel of genes involved in the functioning of synapses and neurogenesis which are tightly linked to the functioning of Purkinje cells. Finally, no ataxia phenotypes were detectable in knockout mice carrying a loss-of-function Kcnd3 mutation. Thus, Kcnd3 F227del is a dominant-negative mutation. This mouse model may serve as a preclinical model for exploring therapeutic strategies to treat patients. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Pathology
The Journal of Pathology 医学-病理学
CiteScore
14.10
自引率
1.40%
发文量
144
审稿时长
3-8 weeks
期刊介绍: The Journal of Pathology aims to serve as a translational bridge between basic biomedical science and clinical medicine with particular emphasis on, but not restricted to, tissue based studies. The main interests of the Journal lie in publishing studies that further our understanding the pathophysiological and pathogenetic mechanisms of human disease. The Journal of Pathology welcomes investigative studies on human tissues, in vitro and in vivo experimental studies, and investigations based on animal models with a clear relevance to human disease, including transgenic systems. As well as original research papers, the Journal seeks to provide rapid publication in a variety of other formats, including editorials, review articles, commentaries and perspectives and other features, both contributed and solicited.
期刊最新文献
A dominant negative Kcnd3 F227del mutation in mice causes spinocerebellar ataxia type 22 (SCA22) by impairing ER and Golgi functioning. AMIGO2 characterizes cancer-associated fibroblasts in metastatic colon cancer and induces the release of paracrine active tumorigenic secretomes. Macrophages producing chondroitin sulfate proteoglycan-4 induce neuro-cardiac junction impairment in Duchenne muscular dystrophy. Issue Information Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1