{"title":"TLR4抑制剂TAK-242通过NF- κB/NLRP3信号调节炎症反应和免疫能力保护大鼠的白癜风肾炎","authors":"Yirong Liu, Qiong Wu, Zhenxing Huang, Dongmei Zhou, Chao Cai, Wenliang Luo, Ping Feng","doi":"10.1111/1440-1681.70008","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study aimed to explore the effect of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) signalling on Henoch–Schonlein purpura nephritis (HSPN). We established a HSPN rat model in a high-altitude hypoxic (HH) environment. Renal tissue lesions were observed by haematoxylin and Eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL), CD20-postive B cells and CD68-postive macrophage cells were detected by immunohistochemistry, T-cell activation was detected by flow cytometry and toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) signalling was detected by western blot. TAK-242 inhibited the expression of TLR4/NF-κB/NLRP3 signalling related-proteins, decreased the levels of 24 h urinary protein, serum creatinine, circular immune complex (CIC) and kidney immunoglobulin A (IgA), and improved renal histopathological damage in HH-HSPN rats. Furthermore, TAK-242 attenuated the infiltration of CD20 and CD68 into the kidney and increased the percentage of CD3+, CD4+ and CD4+/CD8+ cells in the blood of HH-HSPN rats. The study revealed that suppressing TLR4/NF-κB/NLRP3 signalling improved renal function and histopathological damage, and this improvement was related to inhibiting the inflammatory response and enhancing immune competence.</p>\n </div>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"52 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TLR4 Inhibitor TAK-242 Protected Henoch–Schonlein Purpura Nephritis in Rats by Regulating Inflammatory Response and Immune Competence via NF- κB/NLRP3 Signalling\",\"authors\":\"Yirong Liu, Qiong Wu, Zhenxing Huang, Dongmei Zhou, Chao Cai, Wenliang Luo, Ping Feng\",\"doi\":\"10.1111/1440-1681.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study aimed to explore the effect of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) signalling on Henoch–Schonlein purpura nephritis (HSPN). We established a HSPN rat model in a high-altitude hypoxic (HH) environment. Renal tissue lesions were observed by haematoxylin and Eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL), CD20-postive B cells and CD68-postive macrophage cells were detected by immunohistochemistry, T-cell activation was detected by flow cytometry and toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) signalling was detected by western blot. TAK-242 inhibited the expression of TLR4/NF-κB/NLRP3 signalling related-proteins, decreased the levels of 24 h urinary protein, serum creatinine, circular immune complex (CIC) and kidney immunoglobulin A (IgA), and improved renal histopathological damage in HH-HSPN rats. Furthermore, TAK-242 attenuated the infiltration of CD20 and CD68 into the kidney and increased the percentage of CD3+, CD4+ and CD4+/CD8+ cells in the blood of HH-HSPN rats. The study revealed that suppressing TLR4/NF-κB/NLRP3 signalling improved renal function and histopathological damage, and this improvement was related to inhibiting the inflammatory response and enhancing immune competence.</p>\\n </div>\",\"PeriodicalId\":50684,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70008\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在探讨toll样受体4(TLR4)/核因子卡巴B(NF-κB)/NOD样受体热蛋白结构域相关蛋白3(NLRP3)信号传导对白癜风肾炎(HSPN)的影响。我们在高海拔缺氧(HH)环境中建立了 HSPN 大鼠模型。通过血红素和伊红(H&E)染色和末端脱氧核苷酸转移酶介导的 dUTP 缺口标记(TUNEL)观察肾组织病变,通过免疫组化检测 CD20 阳性 B 细胞和 CD68 阳性巨噬细胞、流式细胞术检测 T 细胞的活化,Western 印迹检测收费样受体 4(TLR4)/核因子-卡巴 B(NF-κB)/NOD 样受体热蛋白结构域相关蛋白 3(NLRP3)的信号传导。TAK-242抑制了TLR4/NF-κB/NLRP3信号相关蛋白的表达,降低了HH-HSPN大鼠24小时尿蛋白、血清肌酐、环状免疫复合物(CIC)和肾脏免疫球蛋白A(IgA)的水平,并改善了肾脏组织病理学损伤。此外,TAK-242还能减轻CD20和CD68对肾脏的浸润,增加HH-HSPN大鼠血液中CD3+、CD4+和CD4+/CD8+细胞的比例。研究表明,抑制 TLR4/NF-κB/NLRP3 信号可改善肾功能和组织病理学损伤,而这种改善与抑制炎症反应和提高免疫能力有关。
TLR4 Inhibitor TAK-242 Protected Henoch–Schonlein Purpura Nephritis in Rats by Regulating Inflammatory Response and Immune Competence via NF- κB/NLRP3 Signalling
This study aimed to explore the effect of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) signalling on Henoch–Schonlein purpura nephritis (HSPN). We established a HSPN rat model in a high-altitude hypoxic (HH) environment. Renal tissue lesions were observed by haematoxylin and Eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL), CD20-postive B cells and CD68-postive macrophage cells were detected by immunohistochemistry, T-cell activation was detected by flow cytometry and toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) signalling was detected by western blot. TAK-242 inhibited the expression of TLR4/NF-κB/NLRP3 signalling related-proteins, decreased the levels of 24 h urinary protein, serum creatinine, circular immune complex (CIC) and kidney immunoglobulin A (IgA), and improved renal histopathological damage in HH-HSPN rats. Furthermore, TAK-242 attenuated the infiltration of CD20 and CD68 into the kidney and increased the percentage of CD3+, CD4+ and CD4+/CD8+ cells in the blood of HH-HSPN rats. The study revealed that suppressing TLR4/NF-κB/NLRP3 signalling improved renal function and histopathological damage, and this improvement was related to inhibiting the inflammatory response and enhancing immune competence.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.