{"title":"加速改良黍稷的基因组资源、机遇和前景。","authors":"Faizo Kasule, Oumar Diack, Modou Mbaye, Ronald Kakeeto, Bethany Fallon Econopouly","doi":"10.1007/s00122-024-04777-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Genomic resources, alongside the tools and expertise required to leverage them, are essential for the effective improvement of globally significant millet crop species. Millets are essential for global food security and nutrition, particularly in sub-Saharan Africa and South Asia. They are crucial in promoting nutrition, climate resilience, economic development, and cultural heritage. Despite their critical role, millets have historically received less investment in developing genomic resources than major cereals like wheat, maize, and rice. However, recent advancements in genomics, particularly next-generation sequencing technologies, offer unprecedented opportunities for rapid improvement in millet crops. This review paper provides an overview of the status of genomic resources in millets and in harnessing the recent opportunities in artificial intelligence to address challenges in millet crop improvement to boost productivity, nutrition, and end quality. It emphasizes the significance of genomics in tackling global food security issues and underscores the necessity for innovative breeding strategies to translate genomics and AI into effective breeding strategies for millets.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"273"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic resources, opportunities, and prospects for accelerated improvement of millets.\",\"authors\":\"Faizo Kasule, Oumar Diack, Modou Mbaye, Ronald Kakeeto, Bethany Fallon Econopouly\",\"doi\":\"10.1007/s00122-024-04777-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>Genomic resources, alongside the tools and expertise required to leverage them, are essential for the effective improvement of globally significant millet crop species. Millets are essential for global food security and nutrition, particularly in sub-Saharan Africa and South Asia. They are crucial in promoting nutrition, climate resilience, economic development, and cultural heritage. Despite their critical role, millets have historically received less investment in developing genomic resources than major cereals like wheat, maize, and rice. However, recent advancements in genomics, particularly next-generation sequencing technologies, offer unprecedented opportunities for rapid improvement in millet crops. This review paper provides an overview of the status of genomic resources in millets and in harnessing the recent opportunities in artificial intelligence to address challenges in millet crop improvement to boost productivity, nutrition, and end quality. It emphasizes the significance of genomics in tackling global food security issues and underscores the necessity for innovative breeding strategies to translate genomics and AI into effective breeding strategies for millets.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"137 12\",\"pages\":\"273\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-024-04777-9\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04777-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Genomic resources, opportunities, and prospects for accelerated improvement of millets.
Key message: Genomic resources, alongside the tools and expertise required to leverage them, are essential for the effective improvement of globally significant millet crop species. Millets are essential for global food security and nutrition, particularly in sub-Saharan Africa and South Asia. They are crucial in promoting nutrition, climate resilience, economic development, and cultural heritage. Despite their critical role, millets have historically received less investment in developing genomic resources than major cereals like wheat, maize, and rice. However, recent advancements in genomics, particularly next-generation sequencing technologies, offer unprecedented opportunities for rapid improvement in millet crops. This review paper provides an overview of the status of genomic resources in millets and in harnessing the recent opportunities in artificial intelligence to address challenges in millet crop improvement to boost productivity, nutrition, and end quality. It emphasizes the significance of genomics in tackling global food security issues and underscores the necessity for innovative breeding strategies to translate genomics and AI into effective breeding strategies for millets.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.