提高临床研究中真实世界数据提取的互操作性和透明度:评估在中国医院环境中实施 ChatGLM 的可行性和影响。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS European heart journal. Digital health Pub Date : 2024-09-12 eCollection Date: 2024-11-01 DOI:10.1093/ehjdh/ztae066
Bin Wang, Junkai Lai, Han Cao, Feifei Jin, Qiang Li, Mingkun Tang, Chen Yao, Ping Zhang
{"title":"提高临床研究中真实世界数据提取的互操作性和透明度:评估在中国医院环境中实施 ChatGLM 的可行性和影响。","authors":"Bin Wang, Junkai Lai, Han Cao, Feifei Jin, Qiang Li, Mingkun Tang, Chen Yao, Ping Zhang","doi":"10.1093/ehjdh/ztae066","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aims to assess the feasibility and impact of the implementation of the ChatGLM for real-world data (RWD) extraction in hospital settings. The primary focus of this research is on the effectiveness of ChatGLM-driven data extraction compared with that of manual processes associated with the electronic source data repository (ESDR) system.</p><p><strong>Methods and results: </strong>The researchers developed the ESDR system, which integrates ChatGLM, electronic case report forms (eCRFs), and electronic health records. The LLaMA (Large Language Model Meta AI) model was also deployed to compare the extraction accuracy of ChatGLM in free-text forms. A single-centre retrospective cohort study served as a pilot case. Five eCRF forms of 63 subjects, including free-text forms and discharge medication, were evaluated. Data collection involved electronic medical and prescription records collected from 13 departments. The ChatGLM-assisted process was associated with an estimated efficiency improvement of 80.7% in the eCRF data transcription time. The initial manual input accuracy for free-text forms was 99.59%, the ChatGLM data extraction accuracy was 77.13%, and the LLaMA data extraction accuracy was 43.86%. The challenges associated with the use of ChatGLM focus on prompt design, prompt output consistency, prompt output verification, and integration with hospital information systems.</p><p><strong>Conclusion: </strong>The main contribution of this study is to validate the use of ESDR tools to address the interoperability and transparency challenges of using ChatGLM for RWD extraction in Chinese hospital settings.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"5 6","pages":"712-724"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570364/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing the interoperability and transparency of real-world data extraction in clinical research: evaluating the feasibility and impact of a ChatGLM implementation in Chinese hospital settings.\",\"authors\":\"Bin Wang, Junkai Lai, Han Cao, Feifei Jin, Qiang Li, Mingkun Tang, Chen Yao, Ping Zhang\",\"doi\":\"10.1093/ehjdh/ztae066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This study aims to assess the feasibility and impact of the implementation of the ChatGLM for real-world data (RWD) extraction in hospital settings. The primary focus of this research is on the effectiveness of ChatGLM-driven data extraction compared with that of manual processes associated with the electronic source data repository (ESDR) system.</p><p><strong>Methods and results: </strong>The researchers developed the ESDR system, which integrates ChatGLM, electronic case report forms (eCRFs), and electronic health records. The LLaMA (Large Language Model Meta AI) model was also deployed to compare the extraction accuracy of ChatGLM in free-text forms. A single-centre retrospective cohort study served as a pilot case. Five eCRF forms of 63 subjects, including free-text forms and discharge medication, were evaluated. Data collection involved electronic medical and prescription records collected from 13 departments. The ChatGLM-assisted process was associated with an estimated efficiency improvement of 80.7% in the eCRF data transcription time. The initial manual input accuracy for free-text forms was 99.59%, the ChatGLM data extraction accuracy was 77.13%, and the LLaMA data extraction accuracy was 43.86%. The challenges associated with the use of ChatGLM focus on prompt design, prompt output consistency, prompt output verification, and integration with hospital information systems.</p><p><strong>Conclusion: </strong>The main contribution of this study is to validate the use of ESDR tools to address the interoperability and transparency challenges of using ChatGLM for RWD extraction in Chinese hospital settings.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"5 6\",\"pages\":\"712-724\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570364/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztae066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在评估在医院环境中实施 ChatGLM 进行真实世界数据(RWD)提取的可行性和影响。本研究的主要重点是 ChatGLM 驱动的数据提取与与电子源数据存储库(ESDR)系统相关的人工流程相比的有效性:研究人员开发了 ESDR 系统,该系统集成了 ChatGLM、电子病例报告表 (eCRF) 和电子健康记录。同时还部署了 LLaMA(大型语言模型元人工智能)模型,以比较 ChatGLM 在自由文本形式中的提取准确性。一项单中心回顾性队列研究作为试点案例。对 63 名受试者的 5 份电子病历表进行了评估,其中包括自由文本表和出院用药。数据收集涉及从 13 个科室收集的电子医疗和处方记录。在 ChatGLM 的辅助下,eCRF 数据转录时间的效率估计提高了 80.7%。自由文本表格的初始手动输入准确率为 99.59%,ChatGLM 数据提取准确率为 77.13%,LLaMA 数据提取准确率为 43.86%。使用 ChatGLM 所面临的挑战主要集中在提示设计、提示输出一致性、提示输出验证以及与医院信息系统的集成等方面:本研究的主要贡献在于验证了如何使用 ESDR 工具来解决在中国医院环境中使用 ChatGLM 进行 RWD 提取所面临的互操作性和透明度挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the interoperability and transparency of real-world data extraction in clinical research: evaluating the feasibility and impact of a ChatGLM implementation in Chinese hospital settings.

Aims: This study aims to assess the feasibility and impact of the implementation of the ChatGLM for real-world data (RWD) extraction in hospital settings. The primary focus of this research is on the effectiveness of ChatGLM-driven data extraction compared with that of manual processes associated with the electronic source data repository (ESDR) system.

Methods and results: The researchers developed the ESDR system, which integrates ChatGLM, electronic case report forms (eCRFs), and electronic health records. The LLaMA (Large Language Model Meta AI) model was also deployed to compare the extraction accuracy of ChatGLM in free-text forms. A single-centre retrospective cohort study served as a pilot case. Five eCRF forms of 63 subjects, including free-text forms and discharge medication, were evaluated. Data collection involved electronic medical and prescription records collected from 13 departments. The ChatGLM-assisted process was associated with an estimated efficiency improvement of 80.7% in the eCRF data transcription time. The initial manual input accuracy for free-text forms was 99.59%, the ChatGLM data extraction accuracy was 77.13%, and the LLaMA data extraction accuracy was 43.86%. The challenges associated with the use of ChatGLM focus on prompt design, prompt output consistency, prompt output verification, and integration with hospital information systems.

Conclusion: The main contribution of this study is to validate the use of ESDR tools to address the interoperability and transparency challenges of using ChatGLM for RWD extraction in Chinese hospital settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
期刊最新文献
Introducing online multi-language video animations to support patients' understanding of cardiac procedures in a high-volume tertiary centre. Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome. Validation of machine learning-based risk stratification scores for patients with acute coronary syndrome treated with percutaneous coronary intervention. On the detection of acute coronary occlusion with the miniECG. Cardiac anatomic digital twins: findings from a single national centre.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1