Wenbo Guo, Xinqi Li, Dongfang Wang, Nan Yan, Qifan Hu, Fan Yang, Xuegong Zhang, Jianhua Yao, Jin Gu
{"title":"scStateDynamics:通过模拟单细胞水平的表达变化,解读药物反应性肿瘤细胞的状态动态","authors":"Wenbo Guo, Xinqi Li, Dongfang Wang, Nan Yan, Qifan Hu, Fan Yang, Xuegong Zhang, Jianhua Yao, Jin Gu","doi":"10.1186/s13059-024-03436-y","DOIUrl":null,"url":null,"abstract":"Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.\n","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"19 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes\",\"authors\":\"Wenbo Guo, Xinqi Li, Dongfang Wang, Nan Yan, Qifan Hu, Fan Yang, Xuegong Zhang, Jianhua Yao, Jin Gu\",\"doi\":\"10.1186/s13059-024-03436-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.\\n\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03436-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03436-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes
Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.