scStateDynamics:通过模拟单细胞水平的表达变化,解读药物反应性肿瘤细胞的状态动态

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genome Biology Pub Date : 2024-11-21 DOI:10.1186/s13059-024-03436-y
Wenbo Guo, Xinqi Li, Dongfang Wang, Nan Yan, Qifan Hu, Fan Yang, Xuegong Zhang, Jianhua Yao, Jin Gu
{"title":"scStateDynamics:通过模拟单细胞水平的表达变化,解读药物反应性肿瘤细胞的状态动态","authors":"Wenbo Guo, Xinqi Li, Dongfang Wang, Nan Yan, Qifan Hu, Fan Yang, Xuegong Zhang, Jianhua Yao, Jin Gu","doi":"10.1186/s13059-024-03436-y","DOIUrl":null,"url":null,"abstract":"Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.\n","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"19 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes\",\"authors\":\"Wenbo Guo, Xinqi Li, Dongfang Wang, Nan Yan, Qifan Hu, Fan Yang, Xuegong Zhang, Jianhua Yao, Jin Gu\",\"doi\":\"10.1186/s13059-024-03436-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.\\n\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03436-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03436-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解肿瘤细胞的异质性和可塑性对于克服耐药性至关重要。单细胞技术可以分析给定条件下的细胞状态,但将静态细胞快照归类以描述动态药物反应仍具有挑战性。在此,我们提出了 scStateDynamics 算法,通过模拟单细胞水平的基因表达变化,推断肿瘤细胞的动态状态并识别常见的药物效应。该算法的可靠性在模拟数据和品系追踪数据上都得到了验证。将该算法应用于真实的肿瘤药物治疗数据集,可识别除静态转录组相似性外具有不同药物反应的更微妙的细胞亚群,并从细胞级表达变化中析出药物作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes
Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
期刊最新文献
The genomic portrait of the Picene culture provides new insights into the Italic Iron Age and the legacy of the Roman Empire in Central Italy scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes Considerations in the search for epistasis Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape. VI-VS: calibrated identification of feature dependencies in single-cell multiomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1