Q. Glaude, B. Noel, M. Olesen, M. Van den Broeke, W. J. van de Berg, R. Mottram, N. Hansen, A. Delhasse, C. Amory, C. Kittel, H. Goelzer, X. Fettweis
{"title":"三种区域气候模式在强烈变暖情景(SSP5-8.5)下对 21 世纪格陵兰冰盖地表质量平衡的预测相差 2 倍","authors":"Q. Glaude, B. Noel, M. Olesen, M. Van den Broeke, W. J. van de Berg, R. Mottram, N. Hansen, A. Delhasse, C. Amory, C. Kittel, H. Goelzer, X. Fettweis","doi":"10.1029/2024GL111902","DOIUrl":null,"url":null,"abstract":"<p>The Arctic is warming rapidly, significantly reducing the Greenland ice sheet (GrIS) surface mass balance (SMB) and raising its contribution to global sea-level rise. Since these trends are expected to continue, it is essential to explore the GrIS SMB response to projected climate warming. We compare projections from three polar regional climate models, RACMO, MAR, and HIRHAM, forced by the Community Earth System Model CESM2 under a high-end warming scenario (SSP5-8.5, 1970–2099). We reveal different modeled SMB by 2100, including a twofold larger annual surface mass loss in MAR (−1735 Gt/yr) and HIRHAM (−1698 Gt/yr) relative to RACMO (−964 Gt/yr). Discrepancies primarily stem from differences in projected runoff, triggering melt-albedo positive feedback and subsequent modeled ablation zone expansion. In addition, we find different responses of modeled meltwater production to similar atmospheric warming. Our analysis suggests clear avenues for model developments to further improve SMB projections and contribution to sea-level rise.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 22","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111902","citationCount":"0","resultStr":"{\"title\":\"A Factor Two Difference in 21st-Century Greenland Ice Sheet Surface Mass Balance Projections From Three Regional Climate Models Under a Strong Warming Scenario (SSP5-8.5)\",\"authors\":\"Q. Glaude, B. Noel, M. Olesen, M. Van den Broeke, W. J. van de Berg, R. Mottram, N. Hansen, A. Delhasse, C. Amory, C. Kittel, H. Goelzer, X. Fettweis\",\"doi\":\"10.1029/2024GL111902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Arctic is warming rapidly, significantly reducing the Greenland ice sheet (GrIS) surface mass balance (SMB) and raising its contribution to global sea-level rise. Since these trends are expected to continue, it is essential to explore the GrIS SMB response to projected climate warming. We compare projections from three polar regional climate models, RACMO, MAR, and HIRHAM, forced by the Community Earth System Model CESM2 under a high-end warming scenario (SSP5-8.5, 1970–2099). We reveal different modeled SMB by 2100, including a twofold larger annual surface mass loss in MAR (−1735 Gt/yr) and HIRHAM (−1698 Gt/yr) relative to RACMO (−964 Gt/yr). Discrepancies primarily stem from differences in projected runoff, triggering melt-albedo positive feedback and subsequent modeled ablation zone expansion. In addition, we find different responses of modeled meltwater production to similar atmospheric warming. Our analysis suggests clear avenues for model developments to further improve SMB projections and contribution to sea-level rise.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 22\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111902\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111902\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111902","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A Factor Two Difference in 21st-Century Greenland Ice Sheet Surface Mass Balance Projections From Three Regional Climate Models Under a Strong Warming Scenario (SSP5-8.5)
The Arctic is warming rapidly, significantly reducing the Greenland ice sheet (GrIS) surface mass balance (SMB) and raising its contribution to global sea-level rise. Since these trends are expected to continue, it is essential to explore the GrIS SMB response to projected climate warming. We compare projections from three polar regional climate models, RACMO, MAR, and HIRHAM, forced by the Community Earth System Model CESM2 under a high-end warming scenario (SSP5-8.5, 1970–2099). We reveal different modeled SMB by 2100, including a twofold larger annual surface mass loss in MAR (−1735 Gt/yr) and HIRHAM (−1698 Gt/yr) relative to RACMO (−964 Gt/yr). Discrepancies primarily stem from differences in projected runoff, triggering melt-albedo positive feedback and subsequent modeled ablation zone expansion. In addition, we find different responses of modeled meltwater production to similar atmospheric warming. Our analysis suggests clear avenues for model developments to further improve SMB projections and contribution to sea-level rise.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.