{"title":"基于人工神经网络的浸入式冷却电池热管理系统多目标优化(使用哈默斯利采样法","authors":"Muhammed Donmez, Mehmet Ihsan Karamangil","doi":"10.1016/j.csite.2024.105509","DOIUrl":null,"url":null,"abstract":"This research optimizes lithium-ion battery module cooling through immersion cooling, addressing pressure drop and after discharge average cell temperature. Using the Hammersley method, various module designs are generated. Multi-objective optimization, using ANN-based multi objective genetic algorithms, is conducted on a 16S1P configuration at 4C discharge and 0.008 kg/s. The optimized design achieved an 83 % average cell temperature reduction at a 4C discharge rate and 0.008 kg/s compared to an uncooled battery cell, while also reducing the pressure drop by 88.6 % relative to the base design. The pressure drop is approximately 12 Pa at a mass flow rate of 0.02 kg/s, with an average cell temperature of 3.13°C in the optimized design. This represents a 68.4 % reduction in pressure drop compared to the base design, which experiences approximately 40 Pa at a lower mass flow rate of 0.008 kg/s. Additionally, the optimized design achieves a 20.8 % reduction in average cell temperature, lowering it from 3.95°C in the base design to 3.13°C. These findings highlight improved pressure and thermal performance in lithium-ion battery modules, with implications for enhanced design and operation. Future work could extend these optimizations to various battery chemistries and conditions.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"16 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural networks-based multi-objective optimization of immersion cooling battery thermal management system using Hammersley sampling method\",\"authors\":\"Muhammed Donmez, Mehmet Ihsan Karamangil\",\"doi\":\"10.1016/j.csite.2024.105509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research optimizes lithium-ion battery module cooling through immersion cooling, addressing pressure drop and after discharge average cell temperature. Using the Hammersley method, various module designs are generated. Multi-objective optimization, using ANN-based multi objective genetic algorithms, is conducted on a 16S1P configuration at 4C discharge and 0.008 kg/s. The optimized design achieved an 83 % average cell temperature reduction at a 4C discharge rate and 0.008 kg/s compared to an uncooled battery cell, while also reducing the pressure drop by 88.6 % relative to the base design. The pressure drop is approximately 12 Pa at a mass flow rate of 0.02 kg/s, with an average cell temperature of 3.13°C in the optimized design. This represents a 68.4 % reduction in pressure drop compared to the base design, which experiences approximately 40 Pa at a lower mass flow rate of 0.008 kg/s. Additionally, the optimized design achieves a 20.8 % reduction in average cell temperature, lowering it from 3.95°C in the base design to 3.13°C. These findings highlight improved pressure and thermal performance in lithium-ion battery modules, with implications for enhanced design and operation. Future work could extend these optimizations to various battery chemistries and conditions.\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csite.2024.105509\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105509","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Artificial neural networks-based multi-objective optimization of immersion cooling battery thermal management system using Hammersley sampling method
This research optimizes lithium-ion battery module cooling through immersion cooling, addressing pressure drop and after discharge average cell temperature. Using the Hammersley method, various module designs are generated. Multi-objective optimization, using ANN-based multi objective genetic algorithms, is conducted on a 16S1P configuration at 4C discharge and 0.008 kg/s. The optimized design achieved an 83 % average cell temperature reduction at a 4C discharge rate and 0.008 kg/s compared to an uncooled battery cell, while also reducing the pressure drop by 88.6 % relative to the base design. The pressure drop is approximately 12 Pa at a mass flow rate of 0.02 kg/s, with an average cell temperature of 3.13°C in the optimized design. This represents a 68.4 % reduction in pressure drop compared to the base design, which experiences approximately 40 Pa at a lower mass flow rate of 0.008 kg/s. Additionally, the optimized design achieves a 20.8 % reduction in average cell temperature, lowering it from 3.95°C in the base design to 3.13°C. These findings highlight improved pressure and thermal performance in lithium-ion battery modules, with implications for enhanced design and operation. Future work could extend these optimizations to various battery chemistries and conditions.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.