设计由圆偏振光激发的等离子纳米结构上电荷密度的旋转运动

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanophotonics Pub Date : 2024-11-20 DOI:10.1515/nanoph-2024-0433
Naoki Ichiji, Takuya Ishida, Ikki Morichika, Daigo Oue, Tetsu Tatsuma, Satoshi Ashihara
{"title":"设计由圆偏振光激发的等离子纳米结构上电荷密度的旋转运动","authors":"Naoki Ichiji, Takuya Ishida, Ikki Morichika, Daigo Oue, Tetsu Tatsuma, Satoshi Ashihara","doi":"10.1515/nanoph-2024-0433","DOIUrl":null,"url":null,"abstract":"Rotational motion of charges in plasmonic nanostructures plays an important role in transferring angular momentum between light and matter on the nanometer scale. Although sophisticated control of rotational charge motion has been achieved using spatially structured light, its extension to simultaneous excitation of the same charge motion in multiple nanostructures is not straightforward. In this study, we perform model calculations to show that spatially homogeneous circularly polarized (CP) light can excite rotational charge motions with a high degrees of freedom by exploiting the rotational symmetry of the plasmonic structure and that of the plasmon mode. Finite-difference time-domain simulations demonstrate selective excitation of rotational charge motion for both isolated nanoplates and periodic array structures, showing that complex charge rotations can be manipulated by plane CP waves in a wide range of plasmonic structures.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"34 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing rotational motion of charge densities on plasmonic nanostructures excited by circularly polarized light\",\"authors\":\"Naoki Ichiji, Takuya Ishida, Ikki Morichika, Daigo Oue, Tetsu Tatsuma, Satoshi Ashihara\",\"doi\":\"10.1515/nanoph-2024-0433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rotational motion of charges in plasmonic nanostructures plays an important role in transferring angular momentum between light and matter on the nanometer scale. Although sophisticated control of rotational charge motion has been achieved using spatially structured light, its extension to simultaneous excitation of the same charge motion in multiple nanostructures is not straightforward. In this study, we perform model calculations to show that spatially homogeneous circularly polarized (CP) light can excite rotational charge motions with a high degrees of freedom by exploiting the rotational symmetry of the plasmonic structure and that of the plasmon mode. Finite-difference time-domain simulations demonstrate selective excitation of rotational charge motion for both isolated nanoplates and periodic array structures, showing that complex charge rotations can be manipulated by plane CP waves in a wide range of plasmonic structures.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0433\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0433","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

质子纳米结构中的电荷旋转运动在纳米尺度的光与物质之间传递角动量方面发挥着重要作用。虽然利用空间结构光已经实现了对旋转电荷运动的精密控制,但将其扩展到在多个纳米结构中同时激发相同的电荷运动并不简单。在本研究中,我们通过模型计算表明,空间均匀圆偏振(CP)光可以利用等离子结构的旋转对称性和等离子模式的旋转对称性,激发具有高自由度的旋转电荷运动。有限差分时域模拟证明了孤立纳米板和周期性阵列结构对旋转电荷运动的选择性激发,表明平面 CP 波可以在多种质子结构中操纵复杂的电荷旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing rotational motion of charge densities on plasmonic nanostructures excited by circularly polarized light
Rotational motion of charges in plasmonic nanostructures plays an important role in transferring angular momentum between light and matter on the nanometer scale. Although sophisticated control of rotational charge motion has been achieved using spatially structured light, its extension to simultaneous excitation of the same charge motion in multiple nanostructures is not straightforward. In this study, we perform model calculations to show that spatially homogeneous circularly polarized (CP) light can excite rotational charge motions with a high degrees of freedom by exploiting the rotational symmetry of the plasmonic structure and that of the plasmon mode. Finite-difference time-domain simulations demonstrate selective excitation of rotational charge motion for both isolated nanoplates and periodic array structures, showing that complex charge rotations can be manipulated by plane CP waves in a wide range of plasmonic structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
期刊最新文献
All-optical switch exploiting Fano resonance and subwavelength light confinement Artificial intelligence driven Mid-IR photoimaging device based on van der Waals heterojunctions of black phosphorus Empowering nanophotonic applications via artificial intelligence: pathways, progress, and prospects Enhanced optical encryption via polarization-dependent multi-channel metasurfaces Transverse orbital angular momentum and polarization entangled spatiotemporal structured light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1