Yunkai Wei;Zikang Wan;Yinan Xiao;Supeng Leng;Kezhi Wang;Kun Yang
{"title":"物联网网络中无人机移动边缘计算的联合分割卸载和轨迹调度","authors":"Yunkai Wei;Zikang Wan;Yinan Xiao;Supeng Leng;Kezhi Wang;Kun Yang","doi":"10.1109/TNSE.2024.3476168","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicles (UAV) can provide mobile edge computing (MEC) service for resource-limited devices in Internet of Things (IoT). In such scenario, partial offloading can be used to balance the computing task between the UAV and the IoT devices for higher efficiency. However, traditional partial offloading is not suitable for training deep neural network (DNN), since DNN models cannot be portioned with a continuous ratio. In this paper, we introduce a split offloading scheme, which can flexibly split the DNN training task into two parts based on the DNN layers, and allocate them to the IoT device and UAV respectively. We present a scheme to synchronize the training and communicating period of DNN layers in the UAV and IoT device, and thus reduce the model training time. Based on this scheme, an optimization model is proposed to minimize the UAV energy consumption, which jointly optimizes the UAV trajectory, the DNN split position and the service time scheduling. We divide the problem into two subproblems and solve it with an iterative solution. Simulation results show the proposed scheme can reduce the model training time and the UAV energy consumption by up to 25% and 14.4% compared with benchmark schemes, respectively.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"6180-6193"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Split Offloading and Trajectory Scheduling for UAV-Enabled Mobile Edge Computing in IoT Network\",\"authors\":\"Yunkai Wei;Zikang Wan;Yinan Xiao;Supeng Leng;Kezhi Wang;Kun Yang\",\"doi\":\"10.1109/TNSE.2024.3476168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned Aerial Vehicles (UAV) can provide mobile edge computing (MEC) service for resource-limited devices in Internet of Things (IoT). In such scenario, partial offloading can be used to balance the computing task between the UAV and the IoT devices for higher efficiency. However, traditional partial offloading is not suitable for training deep neural network (DNN), since DNN models cannot be portioned with a continuous ratio. In this paper, we introduce a split offloading scheme, which can flexibly split the DNN training task into two parts based on the DNN layers, and allocate them to the IoT device and UAV respectively. We present a scheme to synchronize the training and communicating period of DNN layers in the UAV and IoT device, and thus reduce the model training time. Based on this scheme, an optimization model is proposed to minimize the UAV energy consumption, which jointly optimizes the UAV trajectory, the DNN split position and the service time scheduling. We divide the problem into two subproblems and solve it with an iterative solution. Simulation results show the proposed scheme can reduce the model training time and the UAV energy consumption by up to 25% and 14.4% compared with benchmark schemes, respectively.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"11 6\",\"pages\":\"6180-6193\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10707659/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10707659/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Joint Split Offloading and Trajectory Scheduling for UAV-Enabled Mobile Edge Computing in IoT Network
Unmanned Aerial Vehicles (UAV) can provide mobile edge computing (MEC) service for resource-limited devices in Internet of Things (IoT). In such scenario, partial offloading can be used to balance the computing task between the UAV and the IoT devices for higher efficiency. However, traditional partial offloading is not suitable for training deep neural network (DNN), since DNN models cannot be portioned with a continuous ratio. In this paper, we introduce a split offloading scheme, which can flexibly split the DNN training task into two parts based on the DNN layers, and allocate them to the IoT device and UAV respectively. We present a scheme to synchronize the training and communicating period of DNN layers in the UAV and IoT device, and thus reduce the model training time. Based on this scheme, an optimization model is proposed to minimize the UAV energy consumption, which jointly optimizes the UAV trajectory, the DNN split position and the service time scheduling. We divide the problem into two subproblems and solve it with an iterative solution. Simulation results show the proposed scheme can reduce the model training time and the UAV energy consumption by up to 25% and 14.4% compared with benchmark schemes, respectively.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.