在 5G HetNets 中利用流量分流实现负载平衡以增强 QoS

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY IEEE Transactions on Network Science and Engineering Pub Date : 2024-10-21 DOI:10.1109/TNSE.2024.3482365
Abdul Manan;Syed Maaz Shahid;SungKyung Kim;Sungoh Kwon
{"title":"在 5G HetNets 中利用流量分流实现负载平衡以增强 QoS","authors":"Abdul Manan;Syed Maaz Shahid;SungKyung Kim;Sungoh Kwon","doi":"10.1109/TNSE.2024.3482365","DOIUrl":null,"url":null,"abstract":"In heterogeneous networks (HetNets), high user density and random small cell deployment often result in uneven User Equipment (UE) distributions among cells. This can lead to excessive resource usage in some cells and a degradation of Quality of Service (QoS) for users, even while resources in other cells remain underutilized. To address this challenge, we propose a load-balancing algorithm for 5G HetNets that employs traffic splitting for dual connectivity (DC) users. By enabling traffic splitting, DC allows UEs to receive data from both macro and small cells, thereby enhancing network performance in terms of load balancing and QoS improvement. To prevent cell overloading, we formulate the problem of minimizing load variance across 5G HetNet cells using traffic splitting. We derive a theoretical expression to determine the optimal split ratio by considering the cell load conditions. The proposed algorithm dynamically adjusts the data traffic split for DC users based on the optimal split ratio and, if necessary, offloads edge users from overloaded macro cells to underloaded macro cells to achieve uniform network load distribution. Simulation results demonstrate that the proposed algorithm achieves more even load distribution than other load balancing algorithms and increases network throughput and the number of QoS-satisfied users.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"6272-6284"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load Balancing With Traffic Splitting for QoS Enhancement in 5G HetNets\",\"authors\":\"Abdul Manan;Syed Maaz Shahid;SungKyung Kim;Sungoh Kwon\",\"doi\":\"10.1109/TNSE.2024.3482365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In heterogeneous networks (HetNets), high user density and random small cell deployment often result in uneven User Equipment (UE) distributions among cells. This can lead to excessive resource usage in some cells and a degradation of Quality of Service (QoS) for users, even while resources in other cells remain underutilized. To address this challenge, we propose a load-balancing algorithm for 5G HetNets that employs traffic splitting for dual connectivity (DC) users. By enabling traffic splitting, DC allows UEs to receive data from both macro and small cells, thereby enhancing network performance in terms of load balancing and QoS improvement. To prevent cell overloading, we formulate the problem of minimizing load variance across 5G HetNet cells using traffic splitting. We derive a theoretical expression to determine the optimal split ratio by considering the cell load conditions. The proposed algorithm dynamically adjusts the data traffic split for DC users based on the optimal split ratio and, if necessary, offloads edge users from overloaded macro cells to underloaded macro cells to achieve uniform network load distribution. Simulation results demonstrate that the proposed algorithm achieves more even load distribution than other load balancing algorithms and increases network throughput and the number of QoS-satisfied users.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"11 6\",\"pages\":\"6272-6284\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10723743/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10723743/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在异构网络(HetNets)中,高用户密度和随机小基站部署往往会导致小区之间用户设备(UE)分布不均。这可能会导致某些小区的资源使用率过高,用户服务质量(QoS)下降,甚至其他小区的资源仍未得到充分利用。为了应对这一挑战,我们为 5G HetNets 提出了一种负载平衡算法,该算法为双连接(DC)用户采用了流量分流。通过启用流量分流,DC 允许 UE 同时接收来自宏蜂窝和小蜂窝的数据,从而在负载平衡和 QoS 改善方面提高网络性能。为防止小区过载,我们提出了利用流量分流最小化 5G HetNet 小区负载差异的问题。我们推导出一个理论表达式,通过考虑小区负载条件来确定最佳分流比。所提出的算法会根据最优分流比动态调整直流用户的数据流量分流,并在必要时将边缘用户从过载的宏蜂窝卸载到欠载的宏蜂窝,以实现均匀的网络负载分布。仿真结果表明,与其他负载平衡算法相比,该算法能实现更均匀的负载分布,并提高网络吞吐量和满足 QoS 的用户数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Load Balancing With Traffic Splitting for QoS Enhancement in 5G HetNets
In heterogeneous networks (HetNets), high user density and random small cell deployment often result in uneven User Equipment (UE) distributions among cells. This can lead to excessive resource usage in some cells and a degradation of Quality of Service (QoS) for users, even while resources in other cells remain underutilized. To address this challenge, we propose a load-balancing algorithm for 5G HetNets that employs traffic splitting for dual connectivity (DC) users. By enabling traffic splitting, DC allows UEs to receive data from both macro and small cells, thereby enhancing network performance in terms of load balancing and QoS improvement. To prevent cell overloading, we formulate the problem of minimizing load variance across 5G HetNet cells using traffic splitting. We derive a theoretical expression to determine the optimal split ratio by considering the cell load conditions. The proposed algorithm dynamically adjusts the data traffic split for DC users based on the optimal split ratio and, if necessary, offloads edge users from overloaded macro cells to underloaded macro cells to achieve uniform network load distribution. Simulation results demonstrate that the proposed algorithm achieves more even load distribution than other load balancing algorithms and increases network throughput and the number of QoS-satisfied users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
期刊最新文献
Table of Contents Guest Editorial: Introduction to the Special Section on Aerial Computing Networks in 6G Guest Editorial: Introduction to the Special Section on Research on Power Technology, Economy and Policy Towards Net-Zero Emissions Temporal Link Prediction via Auxiliary Graph Transformer Load Balancing With Traffic Splitting for QoS Enhancement in 5G HetNets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1