{"title":"针对卫星边缘计算的具有异构任务的高能效协作卸载方案","authors":"Changzhen Zhang;Jun Yang","doi":"10.1109/TNSE.2024.3476968","DOIUrl":null,"url":null,"abstract":"Satellite edge computing (SEC) can offer task computing services to ground users, particularly in areas lacking terrestrial network coverage. Nevertheless, given the limited energy of low earth orbit (LEO) satellites, they cannot be used to process numerous computational tasks. Furthermore, most existing task offloading methods are designed for homogeneous tasks, which obviously cannot meet service requirements of various computational tasks. In this work, we investigate energy-efficient collaborative offloading scheme with heterogeneous tasks for SEC to save energy and improve efficiency. Firstly, by dividing computational tasks into delay-sensitive (DS) and delay-tolerant (DT) tasks, we propose a collaborative service architecture with ground edge, satellite edge, and cloud, where specific task offloading schemes are given for both sparse and dense user scenarios to reduce the energy consumption of LEO satellites. Secondly, to reduce the delay and failure rate of DS tasks, we propose an access threshold strategy for DS tasks to control the queue length and facilitate load balancing among multiple computing platforms. Thirdly, to evaluate the proposed offloading scheme, we develop the continuous-time Markov chain (CTMC) to model the traffic load on computing platforms, and the stationary distribution is solved employing the matrix-geometric method. Finally, numerical results for SEC are presented to validate the effectiveness of the proposed offloading scheme.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"6396-6407"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Energy-Efficient Collaborative Offloading Scheme With Heterogeneous Tasks for Satellite Edge Computing\",\"authors\":\"Changzhen Zhang;Jun Yang\",\"doi\":\"10.1109/TNSE.2024.3476968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite edge computing (SEC) can offer task computing services to ground users, particularly in areas lacking terrestrial network coverage. Nevertheless, given the limited energy of low earth orbit (LEO) satellites, they cannot be used to process numerous computational tasks. Furthermore, most existing task offloading methods are designed for homogeneous tasks, which obviously cannot meet service requirements of various computational tasks. In this work, we investigate energy-efficient collaborative offloading scheme with heterogeneous tasks for SEC to save energy and improve efficiency. Firstly, by dividing computational tasks into delay-sensitive (DS) and delay-tolerant (DT) tasks, we propose a collaborative service architecture with ground edge, satellite edge, and cloud, where specific task offloading schemes are given for both sparse and dense user scenarios to reduce the energy consumption of LEO satellites. Secondly, to reduce the delay and failure rate of DS tasks, we propose an access threshold strategy for DS tasks to control the queue length and facilitate load balancing among multiple computing platforms. Thirdly, to evaluate the proposed offloading scheme, we develop the continuous-time Markov chain (CTMC) to model the traffic load on computing platforms, and the stationary distribution is solved employing the matrix-geometric method. Finally, numerical results for SEC are presented to validate the effectiveness of the proposed offloading scheme.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"11 6\",\"pages\":\"6396-6407\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10711242/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10711242/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An Energy-Efficient Collaborative Offloading Scheme With Heterogeneous Tasks for Satellite Edge Computing
Satellite edge computing (SEC) can offer task computing services to ground users, particularly in areas lacking terrestrial network coverage. Nevertheless, given the limited energy of low earth orbit (LEO) satellites, they cannot be used to process numerous computational tasks. Furthermore, most existing task offloading methods are designed for homogeneous tasks, which obviously cannot meet service requirements of various computational tasks. In this work, we investigate energy-efficient collaborative offloading scheme with heterogeneous tasks for SEC to save energy and improve efficiency. Firstly, by dividing computational tasks into delay-sensitive (DS) and delay-tolerant (DT) tasks, we propose a collaborative service architecture with ground edge, satellite edge, and cloud, where specific task offloading schemes are given for both sparse and dense user scenarios to reduce the energy consumption of LEO satellites. Secondly, to reduce the delay and failure rate of DS tasks, we propose an access threshold strategy for DS tasks to control the queue length and facilitate load balancing among multiple computing platforms. Thirdly, to evaluate the proposed offloading scheme, we develop the continuous-time Markov chain (CTMC) to model the traffic load on computing platforms, and the stationary distribution is solved employing the matrix-geometric method. Finally, numerical results for SEC are presented to validate the effectiveness of the proposed offloading scheme.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.