针对卫星边缘计算的具有异构任务的高能效协作卸载方案

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY IEEE Transactions on Network Science and Engineering Pub Date : 2024-10-09 DOI:10.1109/TNSE.2024.3476968
Changzhen Zhang;Jun Yang
{"title":"针对卫星边缘计算的具有异构任务的高能效协作卸载方案","authors":"Changzhen Zhang;Jun Yang","doi":"10.1109/TNSE.2024.3476968","DOIUrl":null,"url":null,"abstract":"Satellite edge computing (SEC) can offer task computing services to ground users, particularly in areas lacking terrestrial network coverage. Nevertheless, given the limited energy of low earth orbit (LEO) satellites, they cannot be used to process numerous computational tasks. Furthermore, most existing task offloading methods are designed for homogeneous tasks, which obviously cannot meet service requirements of various computational tasks. In this work, we investigate energy-efficient collaborative offloading scheme with heterogeneous tasks for SEC to save energy and improve efficiency. Firstly, by dividing computational tasks into delay-sensitive (DS) and delay-tolerant (DT) tasks, we propose a collaborative service architecture with ground edge, satellite edge, and cloud, where specific task offloading schemes are given for both sparse and dense user scenarios to reduce the energy consumption of LEO satellites. Secondly, to reduce the delay and failure rate of DS tasks, we propose an access threshold strategy for DS tasks to control the queue length and facilitate load balancing among multiple computing platforms. Thirdly, to evaluate the proposed offloading scheme, we develop the continuous-time Markov chain (CTMC) to model the traffic load on computing platforms, and the stationary distribution is solved employing the matrix-geometric method. Finally, numerical results for SEC are presented to validate the effectiveness of the proposed offloading scheme.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"6396-6407"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Energy-Efficient Collaborative Offloading Scheme With Heterogeneous Tasks for Satellite Edge Computing\",\"authors\":\"Changzhen Zhang;Jun Yang\",\"doi\":\"10.1109/TNSE.2024.3476968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite edge computing (SEC) can offer task computing services to ground users, particularly in areas lacking terrestrial network coverage. Nevertheless, given the limited energy of low earth orbit (LEO) satellites, they cannot be used to process numerous computational tasks. Furthermore, most existing task offloading methods are designed for homogeneous tasks, which obviously cannot meet service requirements of various computational tasks. In this work, we investigate energy-efficient collaborative offloading scheme with heterogeneous tasks for SEC to save energy and improve efficiency. Firstly, by dividing computational tasks into delay-sensitive (DS) and delay-tolerant (DT) tasks, we propose a collaborative service architecture with ground edge, satellite edge, and cloud, where specific task offloading schemes are given for both sparse and dense user scenarios to reduce the energy consumption of LEO satellites. Secondly, to reduce the delay and failure rate of DS tasks, we propose an access threshold strategy for DS tasks to control the queue length and facilitate load balancing among multiple computing platforms. Thirdly, to evaluate the proposed offloading scheme, we develop the continuous-time Markov chain (CTMC) to model the traffic load on computing platforms, and the stationary distribution is solved employing the matrix-geometric method. Finally, numerical results for SEC are presented to validate the effectiveness of the proposed offloading scheme.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"11 6\",\"pages\":\"6396-6407\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10711242/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10711242/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卫星边缘计算(SEC)可为地面用户提供任务计算服务,尤其是在缺乏地面网络覆盖的地区。然而,由于低地球轨道(LEO)卫星的能量有限,无法用于处理大量计算任务。此外,现有的任务卸载方法大多是针对同质任务设计的,显然无法满足各种计算任务的服务要求。在这项工作中,我们研究了针对 SEC 的异构任务节能协同卸载方案,以节约能源并提高效率。首先,通过将计算任务划分为延迟敏感(DS)任务和延迟容忍(DT)任务,我们提出了一种由地面边缘、卫星边缘和云组成的协同服务架构,其中针对稀疏和密集用户场景给出了具体的任务卸载方案,以降低低地轨道卫星的能耗。其次,为了减少 DS 任务的延迟和失败率,我们提出了 DS 任务的访问阈值策略,以控制队列长度,促进多个计算平台之间的负载平衡。第三,为了评估所提出的卸载方案,我们开发了连续时间马尔可夫链(CTMC)来模拟计算平台上的流量负载,并采用矩阵几何方法求解了静态分布。最后,我们给出了 SEC 的数值结果,以验证所提卸载方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Energy-Efficient Collaborative Offloading Scheme With Heterogeneous Tasks for Satellite Edge Computing
Satellite edge computing (SEC) can offer task computing services to ground users, particularly in areas lacking terrestrial network coverage. Nevertheless, given the limited energy of low earth orbit (LEO) satellites, they cannot be used to process numerous computational tasks. Furthermore, most existing task offloading methods are designed for homogeneous tasks, which obviously cannot meet service requirements of various computational tasks. In this work, we investigate energy-efficient collaborative offloading scheme with heterogeneous tasks for SEC to save energy and improve efficiency. Firstly, by dividing computational tasks into delay-sensitive (DS) and delay-tolerant (DT) tasks, we propose a collaborative service architecture with ground edge, satellite edge, and cloud, where specific task offloading schemes are given for both sparse and dense user scenarios to reduce the energy consumption of LEO satellites. Secondly, to reduce the delay and failure rate of DS tasks, we propose an access threshold strategy for DS tasks to control the queue length and facilitate load balancing among multiple computing platforms. Thirdly, to evaluate the proposed offloading scheme, we develop the continuous-time Markov chain (CTMC) to model the traffic load on computing platforms, and the stationary distribution is solved employing the matrix-geometric method. Finally, numerical results for SEC are presented to validate the effectiveness of the proposed offloading scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
期刊最新文献
Table of Contents Guest Editorial: Introduction to the Special Section on Aerial Computing Networks in 6G Guest Editorial: Introduction to the Special Section on Research on Power Technology, Economy and Policy Towards Net-Zero Emissions Temporal Link Prediction via Auxiliary Graph Transformer Load Balancing With Traffic Splitting for QoS Enhancement in 5G HetNets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1