{"title":"用于实时无线检测液体泄漏的生物启发式超灵敏柔性应变传感器","authors":"Weilong Zhou, Yu Du, Yingying Chen, Congyuan Zhang, Xiaowei Ning, Heng Xie, Ting Wu, Jinlian Hu, Jinping Qu","doi":"10.1007/s40820-024-01575-2","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid leakage of pipeline networks not only results in considerable resource wastage but also leads to environmental pollution and ecological imbalance. In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) has been developed using a combination of micro-extrusion compression molding and surface modification for real-time wireless detection of liquid leakage. The TCGS utilizes the synergistic effects of Archimedean spiral crack arrays and micropores, which are inspired by the remarkable sensory capabilities of scorpions. This design achieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability by withstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability in detecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositions while issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenarios in everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effective solution for the early wireless detection of liquid leakage.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01575-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Ultrasensitive Flexible Strain Sensors for Real-Time Wireless Detection of Liquid Leakage\",\"authors\":\"Weilong Zhou, Yu Du, Yingying Chen, Congyuan Zhang, Xiaowei Ning, Heng Xie, Ting Wu, Jinlian Hu, Jinping Qu\",\"doi\":\"10.1007/s40820-024-01575-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Liquid leakage of pipeline networks not only results in considerable resource wastage but also leads to environmental pollution and ecological imbalance. In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) has been developed using a combination of micro-extrusion compression molding and surface modification for real-time wireless detection of liquid leakage. The TCGS utilizes the synergistic effects of Archimedean spiral crack arrays and micropores, which are inspired by the remarkable sensory capabilities of scorpions. This design achieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability by withstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability in detecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositions while issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenarios in everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effective solution for the early wireless detection of liquid leakage.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-024-01575-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01575-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01575-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Bioinspired Ultrasensitive Flexible Strain Sensors for Real-Time Wireless Detection of Liquid Leakage
Liquid leakage of pipeline networks not only results in considerable resource wastage but also leads to environmental pollution and ecological imbalance. In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) has been developed using a combination of micro-extrusion compression molding and surface modification for real-time wireless detection of liquid leakage. The TCGS utilizes the synergistic effects of Archimedean spiral crack arrays and micropores, which are inspired by the remarkable sensory capabilities of scorpions. This design achieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability by withstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability in detecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositions while issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenarios in everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effective solution for the early wireless detection of liquid leakage.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.