{"title":"基于光子晶体的智能窗口","authors":"Bendib Sarra, Benziane Tassaadit, Houairi Kenza","doi":"10.1007/s12633-024-03158-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes energy-efficient smart windows based on one-dimensional photonic crystal structures that operate without an external power source and discuss the design and analysis of the proposed smart window which is composed of SiO2/Vo2 layers, their interaction with light and heat, the effect of the incident waves angles and their potential to reduce energy consumption and radiation exposure. The proposed window proves the performance of blocking harmful rays of ultraviolet and infra-red region even the temperature, polarization and the incident wave angles change and transmitting visible light except the green color that the window appears with, which adds a beauty view to it.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 18","pages":"6395 - 6400"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Window Based Photonic Crystal\",\"authors\":\"Bendib Sarra, Benziane Tassaadit, Houairi Kenza\",\"doi\":\"10.1007/s12633-024-03158-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes energy-efficient smart windows based on one-dimensional photonic crystal structures that operate without an external power source and discuss the design and analysis of the proposed smart window which is composed of SiO2/Vo2 layers, their interaction with light and heat, the effect of the incident waves angles and their potential to reduce energy consumption and radiation exposure. The proposed window proves the performance of blocking harmful rays of ultraviolet and infra-red region even the temperature, polarization and the incident wave angles change and transmitting visible light except the green color that the window appears with, which adds a beauty view to it.</p></div>\",\"PeriodicalId\":776,\"journal\":{\"name\":\"Silicon\",\"volume\":\"16 18\",\"pages\":\"6395 - 6400\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silicon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12633-024-03158-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03158-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
This study proposes energy-efficient smart windows based on one-dimensional photonic crystal structures that operate without an external power source and discuss the design and analysis of the proposed smart window which is composed of SiO2/Vo2 layers, their interaction with light and heat, the effect of the incident waves angles and their potential to reduce energy consumption and radiation exposure. The proposed window proves the performance of blocking harmful rays of ultraviolet and infra-red region even the temperature, polarization and the incident wave angles change and transmitting visible light except the green color that the window appears with, which adds a beauty view to it.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.