{"title":"考虑齿轮偏心和运行阻力的高速列车传动系统机电耦合振动特性","authors":"Yeping Yuan \n (, ), Junguo Wang \n (, )","doi":"10.1007/s10409-024-24307-x","DOIUrl":null,"url":null,"abstract":"<div><p>The gear transmission system directly affects the operational performance of high-speed trains (HST). However, current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance, and the dynamic models of gear transmission system are not sufficiently comprehensive. This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics, in which the internal excitation factors such as gear eccentricity, time-varying meshing stiffness, backlash, meshing error, and external excitation factors such as electromagnetic torque and running resistance are stressed. The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system, and gear eccentricity leads to intensified system vibration and decreased anti-interference ability. In addition, the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection, and electrical signals can also be used to monitor changes in train running resistance in real time. The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromechanical coupling vibration characteristics of high-speed train transmission system considering gear eccentricity and running resistance\",\"authors\":\"Yeping Yuan \\n (, ), Junguo Wang \\n (, )\",\"doi\":\"10.1007/s10409-024-24307-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The gear transmission system directly affects the operational performance of high-speed trains (HST). However, current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance, and the dynamic models of gear transmission system are not sufficiently comprehensive. This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics, in which the internal excitation factors such as gear eccentricity, time-varying meshing stiffness, backlash, meshing error, and external excitation factors such as electromagnetic torque and running resistance are stressed. The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system, and gear eccentricity leads to intensified system vibration and decreased anti-interference ability. In addition, the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection, and electrical signals can also be used to monitor changes in train running resistance in real time. The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24307-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24307-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Electromechanical coupling vibration characteristics of high-speed train transmission system considering gear eccentricity and running resistance
The gear transmission system directly affects the operational performance of high-speed trains (HST). However, current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance, and the dynamic models of gear transmission system are not sufficiently comprehensive. This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics, in which the internal excitation factors such as gear eccentricity, time-varying meshing stiffness, backlash, meshing error, and external excitation factors such as electromagnetic torque and running resistance are stressed. The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system, and gear eccentricity leads to intensified system vibration and decreased anti-interference ability. In addition, the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection, and electrical signals can also be used to monitor changes in train running resistance in real time. The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics