基于卡尔曼滤波器的 ANCF 柔性多体系统状态估计

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Acta Mechanica Sinica Pub Date : 2024-11-13 DOI:10.1007/s10409-024-24373-x
Zuqing Yu  (, ), Shuaiyi Liu  (, ), Qinglong Tian  (, )
{"title":"基于卡尔曼滤波器的 ANCF 柔性多体系统状态估计","authors":"Zuqing Yu \n (,&nbsp;),&nbsp;Shuaiyi Liu \n (,&nbsp;),&nbsp;Qinglong Tian \n (,&nbsp;)","doi":"10.1007/s10409-024-24373-x","DOIUrl":null,"url":null,"abstract":"<div><p>The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring. The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare. In this investigation, a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation (ANCF). The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian. Three types of Kalman filters were used to compare their performance in the state estimation for ANCF. Three cases including flexible planar rotating beam, flexible four-bar mechanism, and flexible rotating shaft were employed to verify the proposed state estimator. According to the different performances of the three types of Kalman filter, suggestions were given for the construction of the state estimator for the flexible multibody system.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kalman filter based state estimation for the flexible multibody system described by ANCF\",\"authors\":\"Zuqing Yu \\n (,&nbsp;),&nbsp;Shuaiyi Liu \\n (,&nbsp;),&nbsp;Qinglong Tian \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-024-24373-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring. The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare. In this investigation, a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation (ANCF). The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian. Three types of Kalman filters were used to compare their performance in the state estimation for ANCF. Three cases including flexible planar rotating beam, flexible four-bar mechanism, and flexible rotating shaft were employed to verify the proposed state estimator. According to the different performances of the three types of Kalman filter, suggestions were given for the construction of the state estimator for the flexible multibody system.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24373-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24373-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

柔性多体系统的状态估计是一个至关重要的问题,因为它是有效控制和状态监测的基础。有关大变形和大旋转柔性多体系统状态估计方法的研究仍然很少。在这项研究中,针对采用绝对节点坐标法(ANCF)离散化的包含大柔性成分的柔性多体系统,设计了一种基于多重非线性卡尔曼滤波算法的状态估计器。状态变量向量是基于独立坐标构建的,而独立坐标是通过约束雅各布确定的。我们使用了三种卡尔曼滤波器来比较它们在 ANCF 状态估计中的性能。为了验证所提出的状态估计器,我们使用了三种情况,包括柔性平面旋转梁、柔性四杆机构和柔性旋转轴。根据三种卡尔曼滤波器的不同性能,提出了构建柔性多体系统状态估计器的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kalman filter based state estimation for the flexible multibody system described by ANCF

The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring. The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare. In this investigation, a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation (ANCF). The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian. Three types of Kalman filters were used to compare their performance in the state estimation for ANCF. Three cases including flexible planar rotating beam, flexible four-bar mechanism, and flexible rotating shaft were employed to verify the proposed state estimator. According to the different performances of the three types of Kalman filter, suggestions were given for the construction of the state estimator for the flexible multibody system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
期刊最新文献
Contact between deformed rough surfaces Electromechanical coupling vibration characteristics of high-speed train transmission system considering gear eccentricity and running resistance Asynchronous deployment scheme and multibody modeling of a ring-truss mesh reflector antenna Kalman filter based state estimation for the flexible multibody system described by ANCF Nanoindentation behavior in T-carbon thin films: a molecular dynamics study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1