Sanni Ruotsalainen, Juha Karjalainen, Mitja Kurki, Elisa Lahtela, Matti Pirinen, Juha Riikonen, Jarmo Ritari, Silja Tammi, Jukka Partanen, Hannele Laivuori, Aarno Palotie, Henrike Heyne, Mark Daly, Elisabeth Widen
{"title":"遗传性不孕症:绘制与女性生殖能力受损有关的基因座图谱","authors":"Sanni Ruotsalainen, Juha Karjalainen, Mitja Kurki, Elisa Lahtela, Matti Pirinen, Juha Riikonen, Jarmo Ritari, Silja Tammi, Jukka Partanen, Hannele Laivuori, Aarno Palotie, Henrike Heyne, Mark Daly, Elisabeth Widen","doi":"10.1016/j.ajhg.2024.10.018","DOIUrl":null,"url":null,"abstract":"<p><p>Female infertility is a common and complex health problem affecting millions of women worldwide. While multiple factors can contribute to this condition, the underlying cause remains elusive in up to 15%-30% of affected individuals. In our large genome-wide association study (GWAS) of 22,849 women with infertility and 198,989 control individuals from the Finnish population cohort FinnGen, we unveil a landscape of genetic factors associated with the disorder. Our recessive analysis identified a low-frequency stop-gained mutation in TATA-box binding protein-like 2 (TBPL2; c.895A>T [p.Arg299Ter]; minor-allele frequency [MAF] = 1.2%) with an impact comparable to highly penetrant monogenic mutations (odds ratio [OR] = 650, p = 4.1 × 10<sup>-25</sup>). While previous studies have linked the orthologous gene to anovulation and sterility in knockout mice, the severe consequence of the p.Arg299Ter variant was evidenced by individuals carrying two copies of that variant having significantly fewer offspring (average of 0.16) compared to women belonging to the other genotype groups (average of 1.75 offspring, p = 1.4 × 10<sup>-15</sup>). Notably, all homozygous women who had given birth had received infertility therapy. Moreover, our age-stratified analyses identified three additional genome-wide significant loci. Two loci were associated with early-onset infertility (diagnosed before age 30), located near CHEK2 and within the major histocompatibility complex (MHC) region. The third locus, associated with late-onset infertility, had its lead SNP located in an intron of a long non-coding RNA (lncRNA) gene. Taken together, our data highlight the significance of rare recessive alleles in shaping female infertility risk. The results further provide evidence supporting specific age-dependent mechanisms underlying this complex disorder.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inherited infertility: Mapping loci associated with impaired female reproduction.\",\"authors\":\"Sanni Ruotsalainen, Juha Karjalainen, Mitja Kurki, Elisa Lahtela, Matti Pirinen, Juha Riikonen, Jarmo Ritari, Silja Tammi, Jukka Partanen, Hannele Laivuori, Aarno Palotie, Henrike Heyne, Mark Daly, Elisabeth Widen\",\"doi\":\"10.1016/j.ajhg.2024.10.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Female infertility is a common and complex health problem affecting millions of women worldwide. While multiple factors can contribute to this condition, the underlying cause remains elusive in up to 15%-30% of affected individuals. In our large genome-wide association study (GWAS) of 22,849 women with infertility and 198,989 control individuals from the Finnish population cohort FinnGen, we unveil a landscape of genetic factors associated with the disorder. Our recessive analysis identified a low-frequency stop-gained mutation in TATA-box binding protein-like 2 (TBPL2; c.895A>T [p.Arg299Ter]; minor-allele frequency [MAF] = 1.2%) with an impact comparable to highly penetrant monogenic mutations (odds ratio [OR] = 650, p = 4.1 × 10<sup>-25</sup>). While previous studies have linked the orthologous gene to anovulation and sterility in knockout mice, the severe consequence of the p.Arg299Ter variant was evidenced by individuals carrying two copies of that variant having significantly fewer offspring (average of 0.16) compared to women belonging to the other genotype groups (average of 1.75 offspring, p = 1.4 × 10<sup>-15</sup>). Notably, all homozygous women who had given birth had received infertility therapy. Moreover, our age-stratified analyses identified three additional genome-wide significant loci. Two loci were associated with early-onset infertility (diagnosed before age 30), located near CHEK2 and within the major histocompatibility complex (MHC) region. The third locus, associated with late-onset infertility, had its lead SNP located in an intron of a long non-coding RNA (lncRNA) gene. Taken together, our data highlight the significance of rare recessive alleles in shaping female infertility risk. The results further provide evidence supporting specific age-dependent mechanisms underlying this complex disorder.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2024.10.018\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2024.10.018","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Inherited infertility: Mapping loci associated with impaired female reproduction.
Female infertility is a common and complex health problem affecting millions of women worldwide. While multiple factors can contribute to this condition, the underlying cause remains elusive in up to 15%-30% of affected individuals. In our large genome-wide association study (GWAS) of 22,849 women with infertility and 198,989 control individuals from the Finnish population cohort FinnGen, we unveil a landscape of genetic factors associated with the disorder. Our recessive analysis identified a low-frequency stop-gained mutation in TATA-box binding protein-like 2 (TBPL2; c.895A>T [p.Arg299Ter]; minor-allele frequency [MAF] = 1.2%) with an impact comparable to highly penetrant monogenic mutations (odds ratio [OR] = 650, p = 4.1 × 10-25). While previous studies have linked the orthologous gene to anovulation and sterility in knockout mice, the severe consequence of the p.Arg299Ter variant was evidenced by individuals carrying two copies of that variant having significantly fewer offspring (average of 0.16) compared to women belonging to the other genotype groups (average of 1.75 offspring, p = 1.4 × 10-15). Notably, all homozygous women who had given birth had received infertility therapy. Moreover, our age-stratified analyses identified three additional genome-wide significant loci. Two loci were associated with early-onset infertility (diagnosed before age 30), located near CHEK2 and within the major histocompatibility complex (MHC) region. The third locus, associated with late-onset infertility, had its lead SNP located in an intron of a long non-coding RNA (lncRNA) gene. Taken together, our data highlight the significance of rare recessive alleles in shaping female infertility risk. The results further provide evidence supporting specific age-dependent mechanisms underlying this complex disorder.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.