Dedipya Yelamanchili, Baiba K Gillard, Antonio M Gotto, Miguel Caínzos Achirica, Khurram Nasir, Alan T Remaley, Corina Rosales, Henry J Pownall
{"title":"高密度脂蛋白游离胆固醇流入巨噬细胞并转移至低密度脂蛋白与高密度脂蛋白游离胆固醇含量相关。","authors":"Dedipya Yelamanchili, Baiba K Gillard, Antonio M Gotto, Miguel Caínzos Achirica, Khurram Nasir, Alan T Remaley, Corina Rosales, Henry J Pownall","doi":"10.1016/j.jlr.2024.100707","DOIUrl":null,"url":null,"abstract":"<p><p>High-density lipoprotein (HDL)-free cholesterol (FC) transfers to other lipoproteins and cells, the former by a spontaneous mechanism and the latter by both spontaneous and receptor-mediated mechanisms. Macrophages are an important cell type in all stages of atherosclerotic cardiovascular disease (ASCVD), and the magnitude of FC efflux from macrophages to HDL, a metric of HDL function, inversely associates with several metrics of ASCVD. Very high plasma HDL concentrations are associated with increased all cause and ASCVD mortality, suggesting that the reverse process, FC influx from HDL into macrophages, is atherogenic. We hypothesize that HDL-FC is a metric of dysfunctional HDL, and when combined with HDL particle number (HDL-P), is an ASCVD risk factor. The magnitude of FC influx from HDL to macrophages is expected to be a function of HDL-P and HDL-FC content. Here we show that plasma HDL-FC content varies 2-fold among normolipidemic human subjects and linearly correlates with low-density lipoprotein (LDL)-FC content. The influx of HDL-FC into macrophages and transfer to LDL increase linearly with HDL-FC. As expected, influx of HDL-FC into macrophages and transfer to LDL are positively correlated. These data support the hypothesis that high HDL FC content is a marker for dysfunctional HDL, resulting in greater influx into macrophages and greater HDL-FC transfer to LDL. HDL-FC transfer to LDL is a valid surrogate for influx into macrophages. This study of HDL composition and function of normolipidemic subjects provides the basis for further investigation and establishment of HDL-FC content as an ASCVD risk factor.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100707"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HDL-Free Cholesterol Influx into Macrophages and Transfer to LDL Correlate with HDL-Free Cholesterol Content.\",\"authors\":\"Dedipya Yelamanchili, Baiba K Gillard, Antonio M Gotto, Miguel Caínzos Achirica, Khurram Nasir, Alan T Remaley, Corina Rosales, Henry J Pownall\",\"doi\":\"10.1016/j.jlr.2024.100707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-density lipoprotein (HDL)-free cholesterol (FC) transfers to other lipoproteins and cells, the former by a spontaneous mechanism and the latter by both spontaneous and receptor-mediated mechanisms. Macrophages are an important cell type in all stages of atherosclerotic cardiovascular disease (ASCVD), and the magnitude of FC efflux from macrophages to HDL, a metric of HDL function, inversely associates with several metrics of ASCVD. Very high plasma HDL concentrations are associated with increased all cause and ASCVD mortality, suggesting that the reverse process, FC influx from HDL into macrophages, is atherogenic. We hypothesize that HDL-FC is a metric of dysfunctional HDL, and when combined with HDL particle number (HDL-P), is an ASCVD risk factor. The magnitude of FC influx from HDL to macrophages is expected to be a function of HDL-P and HDL-FC content. Here we show that plasma HDL-FC content varies 2-fold among normolipidemic human subjects and linearly correlates with low-density lipoprotein (LDL)-FC content. The influx of HDL-FC into macrophages and transfer to LDL increase linearly with HDL-FC. As expected, influx of HDL-FC into macrophages and transfer to LDL are positively correlated. These data support the hypothesis that high HDL FC content is a marker for dysfunctional HDL, resulting in greater influx into macrophages and greater HDL-FC transfer to LDL. HDL-FC transfer to LDL is a valid surrogate for influx into macrophages. This study of HDL composition and function of normolipidemic subjects provides the basis for further investigation and establishment of HDL-FC content as an ASCVD risk factor.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100707\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2024.100707\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100707","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
HDL-Free Cholesterol Influx into Macrophages and Transfer to LDL Correlate with HDL-Free Cholesterol Content.
High-density lipoprotein (HDL)-free cholesterol (FC) transfers to other lipoproteins and cells, the former by a spontaneous mechanism and the latter by both spontaneous and receptor-mediated mechanisms. Macrophages are an important cell type in all stages of atherosclerotic cardiovascular disease (ASCVD), and the magnitude of FC efflux from macrophages to HDL, a metric of HDL function, inversely associates with several metrics of ASCVD. Very high plasma HDL concentrations are associated with increased all cause and ASCVD mortality, suggesting that the reverse process, FC influx from HDL into macrophages, is atherogenic. We hypothesize that HDL-FC is a metric of dysfunctional HDL, and when combined with HDL particle number (HDL-P), is an ASCVD risk factor. The magnitude of FC influx from HDL to macrophages is expected to be a function of HDL-P and HDL-FC content. Here we show that plasma HDL-FC content varies 2-fold among normolipidemic human subjects and linearly correlates with low-density lipoprotein (LDL)-FC content. The influx of HDL-FC into macrophages and transfer to LDL increase linearly with HDL-FC. As expected, influx of HDL-FC into macrophages and transfer to LDL are positively correlated. These data support the hypothesis that high HDL FC content is a marker for dysfunctional HDL, resulting in greater influx into macrophages and greater HDL-FC transfer to LDL. HDL-FC transfer to LDL is a valid surrogate for influx into macrophages. This study of HDL composition and function of normolipidemic subjects provides the basis for further investigation and establishment of HDL-FC content as an ASCVD risk factor.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.