人工智能在遗传性视网膜疾病中的应用:系统综述。

IF 5.1 2区 医学 Q1 OPHTHALMOLOGY Survey of ophthalmology Pub Date : 2024-11-18 DOI:10.1016/j.survophthal.2024.11.007
Mohamad Issa, Georges Sukkarieh, Mathias Gallardo, Ilias Sarbout, Sophie Bonnin, Ramin Tadayoni, Dan Milea
{"title":"人工智能在遗传性视网膜疾病中的应用:系统综述。","authors":"Mohamad Issa, Georges Sukkarieh, Mathias Gallardo, Ilias Sarbout, Sophie Bonnin, Ramin Tadayoni, Dan Milea","doi":"10.1016/j.survophthal.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI)-based methods have been extensively used for the detection and management of various common retinal conditions, but their targeted development for inherited retinal diseases (IRD) is still nascent. In the context of limited availability of retinal subspecialists, genetic testing and genetic counseling, there is a high need for accurate and accessible diagnostic methods. The currently available AI studies, aiming for detection, classification, and prediction of IRD, remain mainly retrospective and include relatively limited numbers of patients due to their scarcity. We summarize the latest findings and clinical implications of machine-learning algorithms in IRD, highlighting the achievements and challenges of AI to assist ophthalmologists in their clinical practice.</p>","PeriodicalId":22102,"journal":{"name":"Survey of ophthalmology","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of artificial intelligence to inherited retinal diseases: A systematic review.\",\"authors\":\"Mohamad Issa, Georges Sukkarieh, Mathias Gallardo, Ilias Sarbout, Sophie Bonnin, Ramin Tadayoni, Dan Milea\",\"doi\":\"10.1016/j.survophthal.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI)-based methods have been extensively used for the detection and management of various common retinal conditions, but their targeted development for inherited retinal diseases (IRD) is still nascent. In the context of limited availability of retinal subspecialists, genetic testing and genetic counseling, there is a high need for accurate and accessible diagnostic methods. The currently available AI studies, aiming for detection, classification, and prediction of IRD, remain mainly retrospective and include relatively limited numbers of patients due to their scarcity. We summarize the latest findings and clinical implications of machine-learning algorithms in IRD, highlighting the achievements and challenges of AI to assist ophthalmologists in their clinical practice.</p>\",\"PeriodicalId\":22102,\"journal\":{\"name\":\"Survey of ophthalmology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Survey of ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.survophthal.2024.11.007\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey of ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.survophthal.2024.11.007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于人工智能(AI)的方法已被广泛用于各种常见视网膜疾病的检测和管理,但针对遗传性视网膜疾病(IRD)的开发仍处于起步阶段。在视网膜亚专科医生、基因检测和遗传咨询有限的情况下,对准确、易用的诊断方法的需求很高。目前,旨在检测、分类和预测 IRD 的人工智能研究仍以回顾性研究为主,而且由于研究数量稀少,纳入的患者人数也相对有限。我们总结了机器学习算法在 IRD 方面的最新发现和临床意义,强调了人工智能在协助眼科医生临床实践方面所取得的成就和面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applications of artificial intelligence to inherited retinal diseases: A systematic review.

Artificial intelligence (AI)-based methods have been extensively used for the detection and management of various common retinal conditions, but their targeted development for inherited retinal diseases (IRD) is still nascent. In the context of limited availability of retinal subspecialists, genetic testing and genetic counseling, there is a high need for accurate and accessible diagnostic methods. The currently available AI studies, aiming for detection, classification, and prediction of IRD, remain mainly retrospective and include relatively limited numbers of patients due to their scarcity. We summarize the latest findings and clinical implications of machine-learning algorithms in IRD, highlighting the achievements and challenges of AI to assist ophthalmologists in their clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Survey of ophthalmology
Survey of ophthalmology 医学-眼科学
CiteScore
10.30
自引率
2.00%
发文量
138
审稿时长
14.8 weeks
期刊介绍: Survey of Ophthalmology is a clinically oriented review journal designed to keep ophthalmologists up to date. Comprehensive major review articles, written by experts and stringently refereed, integrate the literature on subjects selected for their clinical importance. Survey also includes feature articles, section reviews, book reviews, and abstracts.
期刊最新文献
Applications of artificial intelligence to inherited retinal diseases: A systematic review. Presumed phototoxicity from macular vital staining with brilliant blue G and trypan blue: A post-market surveillance study, systematic review, and synthesis of the literature. The adaptive immune system in the retina of diabetes. Association between retinal vessels caliber and systemic health: A comprehensive review. Uveitis among people with multiple sclerosis: A systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1