{"title":"利用商用云平台开发远程病人监护基础设施。","authors":"Minh Cao, Ramin Ramezani, Vivek Kumar Katakwar, Wenhao Zhang, Dheeraj Boda, Muneeb Wani, Arash Naeim","doi":"10.3389/fdgth.2024.1399461","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable sensor devices for continuous patient monitoring produce a large volume of data, necessitating scalable infrastructures for efficient data processing, management and security, especially concerning Patient Health Information (PHI). Adherence to the Health Insurance Portability and Accountability Act (HIPAA), a legislation that mandates developers and healthcare providers to uphold a set of standards for safeguarding patients' health information and privacy, further complicates the development of remote patient monitoring within healthcare ecosystems. This paper presents an Internet of Things (IoT) architecture designed for the healthcare sector, utilizing commercial cloud platforms like Microsoft Azure and Amazon Web Services (AWS) to develop HIPAA-compliant health monitoring systems. By leveraging cloud functionalities such as scalability, security, and load balancing, the architecture simplifies the creation of infrastructures adhering to HIPAA standards. The study includes a cost analysis of Azure and AWS infrastructures and evaluates data processing speeds and database query latencies, offering insights into their performance for healthcare applications.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"6 ","pages":"1399461"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576445/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developing remote patient monitoring infrastructure using commercially available cloud platforms.\",\"authors\":\"Minh Cao, Ramin Ramezani, Vivek Kumar Katakwar, Wenhao Zhang, Dheeraj Boda, Muneeb Wani, Arash Naeim\",\"doi\":\"10.3389/fdgth.2024.1399461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wearable sensor devices for continuous patient monitoring produce a large volume of data, necessitating scalable infrastructures for efficient data processing, management and security, especially concerning Patient Health Information (PHI). Adherence to the Health Insurance Portability and Accountability Act (HIPAA), a legislation that mandates developers and healthcare providers to uphold a set of standards for safeguarding patients' health information and privacy, further complicates the development of remote patient monitoring within healthcare ecosystems. This paper presents an Internet of Things (IoT) architecture designed for the healthcare sector, utilizing commercial cloud platforms like Microsoft Azure and Amazon Web Services (AWS) to develop HIPAA-compliant health monitoring systems. By leveraging cloud functionalities such as scalability, security, and load balancing, the architecture simplifies the creation of infrastructures adhering to HIPAA standards. The study includes a cost analysis of Azure and AWS infrastructures and evaluates data processing speeds and database query latencies, offering insights into their performance for healthcare applications.</p>\",\"PeriodicalId\":73078,\"journal\":{\"name\":\"Frontiers in digital health\",\"volume\":\"6 \",\"pages\":\"1399461\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576445/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdgth.2024.1399461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2024.1399461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Developing remote patient monitoring infrastructure using commercially available cloud platforms.
Wearable sensor devices for continuous patient monitoring produce a large volume of data, necessitating scalable infrastructures for efficient data processing, management and security, especially concerning Patient Health Information (PHI). Adherence to the Health Insurance Portability and Accountability Act (HIPAA), a legislation that mandates developers and healthcare providers to uphold a set of standards for safeguarding patients' health information and privacy, further complicates the development of remote patient monitoring within healthcare ecosystems. This paper presents an Internet of Things (IoT) architecture designed for the healthcare sector, utilizing commercial cloud platforms like Microsoft Azure and Amazon Web Services (AWS) to develop HIPAA-compliant health monitoring systems. By leveraging cloud functionalities such as scalability, security, and load balancing, the architecture simplifies the creation of infrastructures adhering to HIPAA standards. The study includes a cost analysis of Azure and AWS infrastructures and evaluates data processing speeds and database query latencies, offering insights into their performance for healthcare applications.