植物和精油类杀虫剂的创新配方策略

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2024-11-22 DOI:10.1007/s10340-024-01846-2
Kasturi Sarmah, Thirumurugan Anbalagan, Murugan Marimuthu, Paramasivam Mariappan, Suganthi Angappan, Sendhilvel Vaithiyanathan
{"title":"植物和精油类杀虫剂的创新配方策略","authors":"Kasturi Sarmah, Thirumurugan Anbalagan, Murugan Marimuthu, Paramasivam Mariappan, Suganthi Angappan, Sendhilvel Vaithiyanathan","doi":"10.1007/s10340-024-01846-2","DOIUrl":null,"url":null,"abstract":"<p>In response to growing concerns regarding the adverse environmental and health effects of synthetic pesticides, there has been a notable surge in the demand for plant-based bioinsecticides. Botanicals and essential oils (EOs) are emerging as promising alternatives that offer a safer and more sustainable approach to pest management. Nevertheless, the effectiveness of these natural insecticides is often hindered by their inherent instability under environmental conditions, high volatility, and susceptibility to thermal decomposition, which necessitates frequent reapplication and diminishes their practical utility. To address these challenges, innovative formulation strategies such as nanoemulsions, microemulsions, nanoencapsulation, and microencapsulation have been developed. These advanced approaches facilitate controlled release, enhance stability, and significantly improve the efficacy of botanical- and EO-based insecticides. By providing target-specific action, these formulations not only reduce the frequency of applications and lower dosage requirements but also minimize environmental contamination and enhance overall pest management efficiency. This review offers a comprehensive exploration of these advanced formulations, including the preparation and characterization of nano-/microemulsion and nano-/microencapsulate systems and the technical challenges associated with their characterization. This manuscript examines the efficacy of these formulations in pest management, focusing on their physical and chemical stability under various storage conditions. Additionally, it addressed the impact of these formulations on nontarget organisms and their potential phytotoxicity. Despite the promising results observed in controlled settings, there is a notable lack of field studies evaluating the suitability of these formulations for different crops and their effectiveness in diverse agricultural environments. This identified gap underscores the necessity for further research to validate the practical application of these technologies. This review also discusses the scalability and cost-effectiveness of these advanced formulations, providing insights into their potential for broader commercial adoption.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"15 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative formulation strategies for botanical- and essential oil-based insecticides\",\"authors\":\"Kasturi Sarmah, Thirumurugan Anbalagan, Murugan Marimuthu, Paramasivam Mariappan, Suganthi Angappan, Sendhilvel Vaithiyanathan\",\"doi\":\"10.1007/s10340-024-01846-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In response to growing concerns regarding the adverse environmental and health effects of synthetic pesticides, there has been a notable surge in the demand for plant-based bioinsecticides. Botanicals and essential oils (EOs) are emerging as promising alternatives that offer a safer and more sustainable approach to pest management. Nevertheless, the effectiveness of these natural insecticides is often hindered by their inherent instability under environmental conditions, high volatility, and susceptibility to thermal decomposition, which necessitates frequent reapplication and diminishes their practical utility. To address these challenges, innovative formulation strategies such as nanoemulsions, microemulsions, nanoencapsulation, and microencapsulation have been developed. These advanced approaches facilitate controlled release, enhance stability, and significantly improve the efficacy of botanical- and EO-based insecticides. By providing target-specific action, these formulations not only reduce the frequency of applications and lower dosage requirements but also minimize environmental contamination and enhance overall pest management efficiency. This review offers a comprehensive exploration of these advanced formulations, including the preparation and characterization of nano-/microemulsion and nano-/microencapsulate systems and the technical challenges associated with their characterization. This manuscript examines the efficacy of these formulations in pest management, focusing on their physical and chemical stability under various storage conditions. Additionally, it addressed the impact of these formulations on nontarget organisms and their potential phytotoxicity. Despite the promising results observed in controlled settings, there is a notable lack of field studies evaluating the suitability of these formulations for different crops and their effectiveness in diverse agricultural environments. This identified gap underscores the necessity for further research to validate the practical application of these technologies. This review also discusses the scalability and cost-effectiveness of these advanced formulations, providing insights into their potential for broader commercial adoption.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01846-2\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01846-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于人们日益关注合成杀虫剂对环境和健康的不利影响,对植物基生物杀虫剂的需求明显激增。植物药和精油(EOs)正在成为一种有前途的替代品,为害虫管理提供了一种更安全、更可持续的方法。然而,这些天然杀虫剂在环境条件下固有的不稳定性、高挥发性和易热分解性往往阻碍了它们的有效性,这使得它们必须经常重新施用,降低了它们的实用性。为了应对这些挑战,人们开发出了纳米乳剂、微乳剂、纳米胶囊和微胶囊等创新配方策略。这些先进的方法有助于控制释放,提高稳定性,并显著改善植物杀虫剂和环氧乙烷杀虫剂的药效。通过提供靶向作用,这些制剂不仅减少了施药次数,降低了剂量要求,还最大限度地减少了环境污染,提高了害虫管理的整体效率。本综述全面探讨了这些先进制剂,包括纳米/微乳剂和纳米/微胶囊系统的制备和表征,以及与其表征相关的技术挑战。该手稿研究了这些制剂在害虫管理方面的功效,重点关注其在各种储存条件下的物理和化学稳定性。此外,它还探讨了这些制剂对非目标生物的影响及其潜在的植物毒性。尽管在受控环境下观察到的结果很有希望,但明显缺乏实地研究来评估这些制剂对不同作物的适用性及其在不同农业环境中的有效性。这一已发现的空白强调了进一步研究的必要性,以验证这些技术的实际应用。本综述还讨论了这些先进制剂的可扩展性和成本效益,为更广泛的商业应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative formulation strategies for botanical- and essential oil-based insecticides

In response to growing concerns regarding the adverse environmental and health effects of synthetic pesticides, there has been a notable surge in the demand for plant-based bioinsecticides. Botanicals and essential oils (EOs) are emerging as promising alternatives that offer a safer and more sustainable approach to pest management. Nevertheless, the effectiveness of these natural insecticides is often hindered by their inherent instability under environmental conditions, high volatility, and susceptibility to thermal decomposition, which necessitates frequent reapplication and diminishes their practical utility. To address these challenges, innovative formulation strategies such as nanoemulsions, microemulsions, nanoencapsulation, and microencapsulation have been developed. These advanced approaches facilitate controlled release, enhance stability, and significantly improve the efficacy of botanical- and EO-based insecticides. By providing target-specific action, these formulations not only reduce the frequency of applications and lower dosage requirements but also minimize environmental contamination and enhance overall pest management efficiency. This review offers a comprehensive exploration of these advanced formulations, including the preparation and characterization of nano-/microemulsion and nano-/microencapsulate systems and the technical challenges associated with their characterization. This manuscript examines the efficacy of these formulations in pest management, focusing on their physical and chemical stability under various storage conditions. Additionally, it addressed the impact of these formulations on nontarget organisms and their potential phytotoxicity. Despite the promising results observed in controlled settings, there is a notable lack of field studies evaluating the suitability of these formulations for different crops and their effectiveness in diverse agricultural environments. This identified gap underscores the necessity for further research to validate the practical application of these technologies. This review also discusses the scalability and cost-effectiveness of these advanced formulations, providing insights into their potential for broader commercial adoption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Assessment of drive efficiency and resistance allele formation of a homing gene drive in the mosquito Aedes aegypti Exclusion of ants conditions the efficiency of an attract and reward strategy against Dysaphis plantaginea in apple orchards From a stored-product pest to a promising protein source: a U-turn of human perspective for the yellow mealworm Tenebrio molitor Biological control of pests of stored cereals with the predatory mites Blattisocius tarsalis and Cheyletus malaccensis Cover crop providing windborne pollen enhances the efficacy of biocontrol of multiple pests by Euseius sojaensis in citrus orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1