{"title":"铁(Ⅱ)去除铬(Ⅵ)的反应活性与赤铁矿的面相有关","authors":"Shengnan Zhang, Lingyi Li, Junxue Li, Wei Cheng","doi":"10.1039/d4en00733f","DOIUrl":null,"url":null,"abstract":"Hematite displays diverse crystal structures and often coexists with Fe(Ⅱ), both of which are crucial in controlling the fate and mobility of Cr(Ⅵ). However, the mechanisms underlying Cr(Ⅵ) removal in the presence of Fe(Ⅱ) on various hematite facets remain elusive. This study aims to elucidate the facet-dependent reactivity of hematite nanocrystals in conjunction with Fe(Ⅱ) for the removal Cr(Ⅵ) from aqueous solutions. Hematite nanoplates (HNPs), predominantly composed of {001} facets, and nanorods (HNRs), exposing both {001} and {110} facets, were synthesized and characterized. Their Cr(VI) removal capabilities were evaluated in hematite-Cr(VI) and hematite-Fe(II)-Cr(VI) systems, as well as the Fe(II)-Cr(VI) system. The adsorption of Fe(Ⅱ) and Cr(VI) on hematite surfaces was highly dependent on the crystal facets and pH, with HNRs demonstrating superior Cr(Ⅵ) adsorption over HNPs, especially under acidic conditions. Neutral pH favored Fe(II)-Cr(VI) redox reactions and Fe(II) adsorption. The hematite-Fe(Ⅱ) couple displayed a synergistic effect in removing Cr(Ⅵ) under acidic conditions, which was not observed under neutral conditions. The presence of Fe(Ⅱ) notably enhanced Cr(Ⅵ) adsorption onto hematite, and bound Fe(Ⅱ) facilitated electron transfer, accelerating Cr(Ⅵ) reduction. HNRs-Fe(Ⅱ) exhibited higher Cr(Ⅵ) removal efficiency than HNPs-Fe(Ⅱ) due to their lower free corrosion potential and improved electron transport properties. This research underscores the potential of facet engineering in optimizing hematite nanocrystals for environmental remediation, specifically in Cr(Ⅵ)-contaminated environments.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"46 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facet-Dependent Hematite Reactivity in Cr(Ⅵ) Removal with Fe(Ⅱ)\",\"authors\":\"Shengnan Zhang, Lingyi Li, Junxue Li, Wei Cheng\",\"doi\":\"10.1039/d4en00733f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hematite displays diverse crystal structures and often coexists with Fe(Ⅱ), both of which are crucial in controlling the fate and mobility of Cr(Ⅵ). However, the mechanisms underlying Cr(Ⅵ) removal in the presence of Fe(Ⅱ) on various hematite facets remain elusive. This study aims to elucidate the facet-dependent reactivity of hematite nanocrystals in conjunction with Fe(Ⅱ) for the removal Cr(Ⅵ) from aqueous solutions. Hematite nanoplates (HNPs), predominantly composed of {001} facets, and nanorods (HNRs), exposing both {001} and {110} facets, were synthesized and characterized. Their Cr(VI) removal capabilities were evaluated in hematite-Cr(VI) and hematite-Fe(II)-Cr(VI) systems, as well as the Fe(II)-Cr(VI) system. The adsorption of Fe(Ⅱ) and Cr(VI) on hematite surfaces was highly dependent on the crystal facets and pH, with HNRs demonstrating superior Cr(Ⅵ) adsorption over HNPs, especially under acidic conditions. Neutral pH favored Fe(II)-Cr(VI) redox reactions and Fe(II) adsorption. The hematite-Fe(Ⅱ) couple displayed a synergistic effect in removing Cr(Ⅵ) under acidic conditions, which was not observed under neutral conditions. The presence of Fe(Ⅱ) notably enhanced Cr(Ⅵ) adsorption onto hematite, and bound Fe(Ⅱ) facilitated electron transfer, accelerating Cr(Ⅵ) reduction. HNRs-Fe(Ⅱ) exhibited higher Cr(Ⅵ) removal efficiency than HNPs-Fe(Ⅱ) due to their lower free corrosion potential and improved electron transport properties. This research underscores the potential of facet engineering in optimizing hematite nanocrystals for environmental remediation, specifically in Cr(Ⅵ)-contaminated environments.\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en00733f\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00733f","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Facet-Dependent Hematite Reactivity in Cr(Ⅵ) Removal with Fe(Ⅱ)
Hematite displays diverse crystal structures and often coexists with Fe(Ⅱ), both of which are crucial in controlling the fate and mobility of Cr(Ⅵ). However, the mechanisms underlying Cr(Ⅵ) removal in the presence of Fe(Ⅱ) on various hematite facets remain elusive. This study aims to elucidate the facet-dependent reactivity of hematite nanocrystals in conjunction with Fe(Ⅱ) for the removal Cr(Ⅵ) from aqueous solutions. Hematite nanoplates (HNPs), predominantly composed of {001} facets, and nanorods (HNRs), exposing both {001} and {110} facets, were synthesized and characterized. Their Cr(VI) removal capabilities were evaluated in hematite-Cr(VI) and hematite-Fe(II)-Cr(VI) systems, as well as the Fe(II)-Cr(VI) system. The adsorption of Fe(Ⅱ) and Cr(VI) on hematite surfaces was highly dependent on the crystal facets and pH, with HNRs demonstrating superior Cr(Ⅵ) adsorption over HNPs, especially under acidic conditions. Neutral pH favored Fe(II)-Cr(VI) redox reactions and Fe(II) adsorption. The hematite-Fe(Ⅱ) couple displayed a synergistic effect in removing Cr(Ⅵ) under acidic conditions, which was not observed under neutral conditions. The presence of Fe(Ⅱ) notably enhanced Cr(Ⅵ) adsorption onto hematite, and bound Fe(Ⅱ) facilitated electron transfer, accelerating Cr(Ⅵ) reduction. HNRs-Fe(Ⅱ) exhibited higher Cr(Ⅵ) removal efficiency than HNPs-Fe(Ⅱ) due to their lower free corrosion potential and improved electron transport properties. This research underscores the potential of facet engineering in optimizing hematite nanocrystals for environmental remediation, specifically in Cr(Ⅵ)-contaminated environments.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis