方便合成用于产生 H2O2 的中空管状 In2O3/PDA S 型无机/有机异质结光催化剂及其机理

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-11-22 DOI:10.1016/j.jmat.2024.100978
Yunhao Ma, Shan Wang, Yingjie Zhang, Bei Cheng, Liuyang Zhang
{"title":"方便合成用于产生 H2O2 的中空管状 In2O3/PDA S 型无机/有机异质结光催化剂及其机理","authors":"Yunhao Ma, Shan Wang, Yingjie Zhang, Bei Cheng, Liuyang Zhang","doi":"10.1016/j.jmat.2024.100978","DOIUrl":null,"url":null,"abstract":"The development of heterojunction photocatalysts for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) generation is both environmentally sustainable and cost-effective but presents considerable challenges. In this study, we synthesized hollow tubular indium oxide (In<sub>2</sub>O<sub>3</sub>) by calcining In-MIL-68 and subsequently composited it with polydopamine (PDA) <em>via in-situ</em> self-polymerization. This process resulted in the formation of an In<sub>2</sub>O<sub>3</sub>/PDA step-scheme (S-scheme) heterojunction. The optimized sample demonstrated H<sub>2</sub>O<sub>2</sub> production rates approximately 2.1 and 4.5 times higher than the pure In<sub>2</sub>O<sub>3</sub> and PDA, respectively. The enhanced photocatalytic performance of the In<sub>2</sub>O<sub>3</sub>/PDA composite is the result of several synergistic factors: increased light absorption due to the hollow structure, a larger specific surface area, and high separation efficiency of photo-generated electron-hole pairs facilitated by the S-scheme heterojunction. <em>In-situ</em> irradiated X-ray photoelectron spectroscopy (ISI-XPS) confirmed the charge transfer pathway follows the S-scheme mechanism. This work not only highlights a practical method for constructing inorganic/organic S-scheme heterojunction photocatalysts but also provides a detailed analysis of their underlying mechanisms, paving the way for more efficient and sustainable photocatalytic systems.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"17 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism\",\"authors\":\"Yunhao Ma, Shan Wang, Yingjie Zhang, Bei Cheng, Liuyang Zhang\",\"doi\":\"10.1016/j.jmat.2024.100978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of heterojunction photocatalysts for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) generation is both environmentally sustainable and cost-effective but presents considerable challenges. In this study, we synthesized hollow tubular indium oxide (In<sub>2</sub>O<sub>3</sub>) by calcining In-MIL-68 and subsequently composited it with polydopamine (PDA) <em>via in-situ</em> self-polymerization. This process resulted in the formation of an In<sub>2</sub>O<sub>3</sub>/PDA step-scheme (S-scheme) heterojunction. The optimized sample demonstrated H<sub>2</sub>O<sub>2</sub> production rates approximately 2.1 and 4.5 times higher than the pure In<sub>2</sub>O<sub>3</sub> and PDA, respectively. The enhanced photocatalytic performance of the In<sub>2</sub>O<sub>3</sub>/PDA composite is the result of several synergistic factors: increased light absorption due to the hollow structure, a larger specific surface area, and high separation efficiency of photo-generated electron-hole pairs facilitated by the S-scheme heterojunction. <em>In-situ</em> irradiated X-ray photoelectron spectroscopy (ISI-XPS) confirmed the charge transfer pathway follows the S-scheme mechanism. This work not only highlights a practical method for constructing inorganic/organic S-scheme heterojunction photocatalysts but also provides a detailed analysis of their underlying mechanisms, paving the way for more efficient and sustainable photocatalytic systems.\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmat.2024.100978\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100978","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发用于生成过氧化氢(H2O2)的异质结光催化剂既具有环境可持续性,又具有成本效益,但同时也面临着相当大的挑战。在本研究中,我们通过煅烧 In-MIL-68 合成了空心管状氧化铟(In2O3),随后通过原位自聚合将其与多巴胺(PDA)复合。这一过程形成了 In2O3/PDA 阶梯式(S-scheme)异质结。优化样品的 H2O2 生成率分别是纯 In2O3 和 PDA 的约 2.1 倍和 4.5 倍。In2O3/PDA 复合材料光催化性能的增强是几个协同因素共同作用的结果:中空结构增加了光吸收,比表面积增大,S-scheme 异质结促进了光生电子-空穴对的高分离效率。原位辐照 X 射线光电子能谱(ISI-XPS)证实电荷转移途径遵循 S 型机制。这项工作不仅强调了构建无机/有机 S 型异质结光催化剂的实用方法,还详细分析了其基本机制,为建立更高效、更可持续的光催化系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism
The development of heterojunction photocatalysts for hydrogen peroxide (H2O2) generation is both environmentally sustainable and cost-effective but presents considerable challenges. In this study, we synthesized hollow tubular indium oxide (In2O3) by calcining In-MIL-68 and subsequently composited it with polydopamine (PDA) via in-situ self-polymerization. This process resulted in the formation of an In2O3/PDA step-scheme (S-scheme) heterojunction. The optimized sample demonstrated H2O2 production rates approximately 2.1 and 4.5 times higher than the pure In2O3 and PDA, respectively. The enhanced photocatalytic performance of the In2O3/PDA composite is the result of several synergistic factors: increased light absorption due to the hollow structure, a larger specific surface area, and high separation efficiency of photo-generated electron-hole pairs facilitated by the S-scheme heterojunction. In-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) confirmed the charge transfer pathway follows the S-scheme mechanism. This work not only highlights a practical method for constructing inorganic/organic S-scheme heterojunction photocatalysts but also provides a detailed analysis of their underlying mechanisms, paving the way for more efficient and sustainable photocatalytic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism Synergistic effects lead to high thermoelectric performance of iodine doped pseudo-binary layered GeSb2Te4 Surface oxygen vacancies in amorphous Fe2O3 tailored nonlinear optical properties for ultrafast photonics High temperature magnetoelectric effect in Fe2TeO6 F− surface modified ZnO for enhanced photocatalytic H2O2 production and its fs-TAS investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1