从原子尺度洞察高熵纳米合金的热稳定性

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-21 DOI:10.1002/adma.202414510
Syrine Krouna, Anissa Acheche, Guillaume Wang, Nathaly Ortiz Pena, Riccardo Gatti, Christian Ricolleau, Hakim Amara, Jaysen Nelayah, Damien Alloyeau
{"title":"从原子尺度洞察高熵纳米合金的热稳定性","authors":"Syrine Krouna, Anissa Acheche, Guillaume Wang, Nathaly Ortiz Pena, Riccardo Gatti, Christian Ricolleau, Hakim Amara, Jaysen Nelayah, Damien Alloyeau","doi":"10.1002/adma.202414510","DOIUrl":null,"url":null,"abstract":"<p><p>High entropy alloy nanoparticles bring hope to developing more efficient nanomaterials for high-temperature applications. Nevertheless, the enhanced thermal stability of nearly equiatomic nanoalloys containing at least 5 metals is nothing more than theoretical speculation about the impact of thermodynamic contributions on their structural properties and remains to be proven. Here, in situ aberration-corrected scanning transmission electron microscopy (STEM) and molecular dynamics simulations are combined to investigate at the atomic scale the thermal behavior of AuCoCuNiPt nanoparticles (NPs) from 298 to 973 K. Both in situ STEM heating and atomistic simulations reveal strong structural and chemical evolutions in the NPs with the formation and melting of an AuCu layer at the surface of NPs at high temperature. This phase separation that appears progressively with temperature is driven by pronounced atomic diffusion that is surprisingly more active in these quinary nanoalloys than in monometallic and bimetallic subsystems. Besides ruling out the existence of sluggish diffusion in AuCoCuNiPt nanoalloys and lowering their temperature range of application, the study allows distinguishing kinetic and thermodynamic effects on their structural properties, which is an essential prerequisite to better control the synthesis of complex nanomaterials.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2414510"},"PeriodicalIF":27.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-Scale Insights Into the Thermal Stability of High-Entropy Nanoalloys.\",\"authors\":\"Syrine Krouna, Anissa Acheche, Guillaume Wang, Nathaly Ortiz Pena, Riccardo Gatti, Christian Ricolleau, Hakim Amara, Jaysen Nelayah, Damien Alloyeau\",\"doi\":\"10.1002/adma.202414510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High entropy alloy nanoparticles bring hope to developing more efficient nanomaterials for high-temperature applications. Nevertheless, the enhanced thermal stability of nearly equiatomic nanoalloys containing at least 5 metals is nothing more than theoretical speculation about the impact of thermodynamic contributions on their structural properties and remains to be proven. Here, in situ aberration-corrected scanning transmission electron microscopy (STEM) and molecular dynamics simulations are combined to investigate at the atomic scale the thermal behavior of AuCoCuNiPt nanoparticles (NPs) from 298 to 973 K. Both in situ STEM heating and atomistic simulations reveal strong structural and chemical evolutions in the NPs with the formation and melting of an AuCu layer at the surface of NPs at high temperature. This phase separation that appears progressively with temperature is driven by pronounced atomic diffusion that is surprisingly more active in these quinary nanoalloys than in monometallic and bimetallic subsystems. Besides ruling out the existence of sluggish diffusion in AuCoCuNiPt nanoalloys and lowering their temperature range of application, the study allows distinguishing kinetic and thermodynamic effects on their structural properties, which is an essential prerequisite to better control the synthesis of complex nanomaterials.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2414510\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202414510\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414510","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金纳米粒子为开发更高效的高温应用纳米材料带来了希望。然而,含有至少 5 种金属的近等原子纳米合金的热稳定性增强,只是热力学贡献对其结构特性影响的理论推测,仍有待证实。本文结合原位像差校正扫描透射电子显微镜(STEM)和分子动力学模拟,在原子尺度上研究了 AuCoCuNiPt 纳米粒子(NPs)在 298 至 973 K 之间的热行为。这种随温度升高而逐渐出现的相分离是由明显的原子扩散驱动的,令人惊讶的是,这种扩散在这些二元纳米合金中比在单金属和双金属子系统中更为活跃。除了排除 AuCoCuNiPt 纳米合金中存在的缓慢扩散并降低其应用温度范围之外,这项研究还能区分动力学和热力学对其结构特性的影响,这是更好地控制复杂纳米材料合成的必要前提。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic-Scale Insights Into the Thermal Stability of High-Entropy Nanoalloys.

High entropy alloy nanoparticles bring hope to developing more efficient nanomaterials for high-temperature applications. Nevertheless, the enhanced thermal stability of nearly equiatomic nanoalloys containing at least 5 metals is nothing more than theoretical speculation about the impact of thermodynamic contributions on their structural properties and remains to be proven. Here, in situ aberration-corrected scanning transmission electron microscopy (STEM) and molecular dynamics simulations are combined to investigate at the atomic scale the thermal behavior of AuCoCuNiPt nanoparticles (NPs) from 298 to 973 K. Both in situ STEM heating and atomistic simulations reveal strong structural and chemical evolutions in the NPs with the formation and melting of an AuCu layer at the surface of NPs at high temperature. This phase separation that appears progressively with temperature is driven by pronounced atomic diffusion that is surprisingly more active in these quinary nanoalloys than in monometallic and bimetallic subsystems. Besides ruling out the existence of sluggish diffusion in AuCoCuNiPt nanoalloys and lowering their temperature range of application, the study allows distinguishing kinetic and thermodynamic effects on their structural properties, which is an essential prerequisite to better control the synthesis of complex nanomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
UNLEASH: Ultralow Nanocluster Loading of Pt via Electro-Acoustic Seasoning of Heterocatalysts Versatile Biopolymers for Advanced Lithium and Zinc Metal Batteries High-Performance Narrowband Pure-Green OLEDs with Gamut Approaching BT.2020 Standard: Deuteration Promotes Device Efficiency and Lifetime Simultaneously Sustainable Lithography Paradigm Enabled by Mechanically Peelable Resists UOTe: Kondo-Interacting Topological Antiferromagnet in a Van der Waals Lattice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1