Álamo Lourenço de Souza, Matheus da Silva Campelo, Gabriel de Sousa Mesquita, Augusto Feynman Dias Nobre, Vitória Maria de Freitas Franco, Antônio César Honorato Barreto, Jeanlex Soares de Sousa, José Eduardo Ribeiro Honório Júnior, Raimunda Sâmia Nogueira Brilhante, Nágila Maria Pontes Silva Ricardo, Sandra de Aguiar Soares, Maria Elenir Nobre Pinho Ribeiro
{"title":"Agaricus blazei Murill 多糖对纳米氧化铜(II)的合成、稳定、急性毒性和抗真菌活性的影响。","authors":"Álamo Lourenço de Souza, Matheus da Silva Campelo, Gabriel de Sousa Mesquita, Augusto Feynman Dias Nobre, Vitória Maria de Freitas Franco, Antônio César Honorato Barreto, Jeanlex Soares de Sousa, José Eduardo Ribeiro Honório Júnior, Raimunda Sâmia Nogueira Brilhante, Nágila Maria Pontes Silva Ricardo, Sandra de Aguiar Soares, Maria Elenir Nobre Pinho Ribeiro","doi":"10.1007/s10534-024-00650-w","DOIUrl":null,"url":null,"abstract":"<p><p>In general, nanomaterials tend to have better physical, chemical and biological properties than conventional materials. Furthermore, the polysaccharides from Agaricus blazei Murill mushroom have several pharmacological properties, in addition to low cytotoxicity and high biocompatibility. This work sought to merge the properties of CuO nanoparticles and Agaricus blazei Murill polysaccharides through syntheses and coatings with the aim of evaluating their toxicity in adult zebrafish and antifungal activity against C. albicans and C. parapsilosis. The nanoparticles were synthesized using the coprecipitation method and subsequently characterized in terms of their physicochemical properties using spectroscopic and thermoanalytical techniques. Furthermore, their composition was determined by X-Ray Diffraction and their morphology was studied using different microscopic techniques. CuO nanoparticles coated with Agaricus blazei Murill polysaccharides showed smaller particle size. Dispersions of nanoparticles coated with the polysaccharides were found to be more stable than their uncoated counterparts. The nanoparticles also showed antifungal activity against Candida sp. strains, with MIC<sub>50</sub> values between 64 and 512 µg mL<sup>-1</sup>. It was observed that coating the materials with polysaccharides preserved their antifungal properties and reduced acute toxicity against adult zebrafish. Therefore, it is estimated that the CuO nanoparticles coated with Agaricus blazei Murill polysaccharides are innovative nanomaterials with potential for future clinical applications, especially in the topical treatment of candidiasis.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Agaricus blazei Murill polysaccharides on synthesis, stabilization, acute toxicity and antifungal activity of copper (II) oxide nanoparticles.\",\"authors\":\"Álamo Lourenço de Souza, Matheus da Silva Campelo, Gabriel de Sousa Mesquita, Augusto Feynman Dias Nobre, Vitória Maria de Freitas Franco, Antônio César Honorato Barreto, Jeanlex Soares de Sousa, José Eduardo Ribeiro Honório Júnior, Raimunda Sâmia Nogueira Brilhante, Nágila Maria Pontes Silva Ricardo, Sandra de Aguiar Soares, Maria Elenir Nobre Pinho Ribeiro\",\"doi\":\"10.1007/s10534-024-00650-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In general, nanomaterials tend to have better physical, chemical and biological properties than conventional materials. Furthermore, the polysaccharides from Agaricus blazei Murill mushroom have several pharmacological properties, in addition to low cytotoxicity and high biocompatibility. This work sought to merge the properties of CuO nanoparticles and Agaricus blazei Murill polysaccharides through syntheses and coatings with the aim of evaluating their toxicity in adult zebrafish and antifungal activity against C. albicans and C. parapsilosis. The nanoparticles were synthesized using the coprecipitation method and subsequently characterized in terms of their physicochemical properties using spectroscopic and thermoanalytical techniques. Furthermore, their composition was determined by X-Ray Diffraction and their morphology was studied using different microscopic techniques. CuO nanoparticles coated with Agaricus blazei Murill polysaccharides showed smaller particle size. Dispersions of nanoparticles coated with the polysaccharides were found to be more stable than their uncoated counterparts. The nanoparticles also showed antifungal activity against Candida sp. strains, with MIC<sub>50</sub> values between 64 and 512 µg mL<sup>-1</sup>. It was observed that coating the materials with polysaccharides preserved their antifungal properties and reduced acute toxicity against adult zebrafish. Therefore, it is estimated that the CuO nanoparticles coated with Agaricus blazei Murill polysaccharides are innovative nanomaterials with potential for future clinical applications, especially in the topical treatment of candidiasis.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-024-00650-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00650-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Influence of Agaricus blazei Murill polysaccharides on synthesis, stabilization, acute toxicity and antifungal activity of copper (II) oxide nanoparticles.
In general, nanomaterials tend to have better physical, chemical and biological properties than conventional materials. Furthermore, the polysaccharides from Agaricus blazei Murill mushroom have several pharmacological properties, in addition to low cytotoxicity and high biocompatibility. This work sought to merge the properties of CuO nanoparticles and Agaricus blazei Murill polysaccharides through syntheses and coatings with the aim of evaluating their toxicity in adult zebrafish and antifungal activity against C. albicans and C. parapsilosis. The nanoparticles were synthesized using the coprecipitation method and subsequently characterized in terms of their physicochemical properties using spectroscopic and thermoanalytical techniques. Furthermore, their composition was determined by X-Ray Diffraction and their morphology was studied using different microscopic techniques. CuO nanoparticles coated with Agaricus blazei Murill polysaccharides showed smaller particle size. Dispersions of nanoparticles coated with the polysaccharides were found to be more stable than their uncoated counterparts. The nanoparticles also showed antifungal activity against Candida sp. strains, with MIC50 values between 64 and 512 µg mL-1. It was observed that coating the materials with polysaccharides preserved their antifungal properties and reduced acute toxicity against adult zebrafish. Therefore, it is estimated that the CuO nanoparticles coated with Agaricus blazei Murill polysaccharides are innovative nanomaterials with potential for future clinical applications, especially in the topical treatment of candidiasis.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.