Lu Yang , Longwu Yu , Guangzi Shi , Lingjie Yang , Yu Wang , Riyu Han , Fengqiong Huang , Yinfeng Qian , Xiaohui Duan
{"title":"动态对比增强磁共振成像的放射学特征可预测头颈部鳞状细胞癌的 Ki-67 状态。","authors":"Lu Yang , Longwu Yu , Guangzi Shi , Lingjie Yang , Yu Wang , Riyu Han , Fengqiong Huang , Yinfeng Qian , Xiaohui Duan","doi":"10.1016/j.mri.2024.110276","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study aimed to investigate the potential of radiomic features derived from dynamic contrast-enhanced MRI (DCE-MRI) in predicting Ki-67 and p16 status in head and neck squamous cell carcinoma (HNSCC).</div></div><div><h3>Materials and methods</h3><div>A cohort of 124 HNSCC patients who underwent pre-surgery DCE-MRI were included and divided into training and test set (7:3), further subgroup analysis was performed for 104 cases with oral squamous cell carcinoma (OSCC). Radiomics features were extracted from DCE images. The least absolute shrinkage and selection operator (LASSO) was used for radiomics features selection, and receiver operating characteristics analysis for predictive performance assessment. The nomogram's performance was evaluated using decision curve analysis (DCA).</div></div><div><h3>Results</h3><div>Ten DCE-MRI features were identified to build the predictive model of HNSCC, demonstrating excellent predictive value for Ki-67 status in both the training set (AUC of 0.943) and test set (AUC of 0.801). The nomograms based on the predictive model showed good fit in the calibration curves (<em>p</em> > 0.05), and DCA indicated its high clinical usefulness. In subgroup analysis of OSCC, fourteen features were selected to build the predictive model for Ki-67 status with an AUC of 0.960 in training set and 0.817 in test set. No features could be included to establish a model to predict p16 status.</div></div><div><h3>Conclusion</h3><div>The radiomics model utilizing DCE-MRI features could effectively predict Ki-67 status in HNSCC patients, offering potential for noninvasive preoperative prediction of Ki-67 status.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"116 ","pages":"Article 110276"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomic features of dynamic contrast-enhanced MRI can predict Ki-67 status in head and neck squamous cell carcinoma\",\"authors\":\"Lu Yang , Longwu Yu , Guangzi Shi , Lingjie Yang , Yu Wang , Riyu Han , Fengqiong Huang , Yinfeng Qian , Xiaohui Duan\",\"doi\":\"10.1016/j.mri.2024.110276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>This study aimed to investigate the potential of radiomic features derived from dynamic contrast-enhanced MRI (DCE-MRI) in predicting Ki-67 and p16 status in head and neck squamous cell carcinoma (HNSCC).</div></div><div><h3>Materials and methods</h3><div>A cohort of 124 HNSCC patients who underwent pre-surgery DCE-MRI were included and divided into training and test set (7:3), further subgroup analysis was performed for 104 cases with oral squamous cell carcinoma (OSCC). Radiomics features were extracted from DCE images. The least absolute shrinkage and selection operator (LASSO) was used for radiomics features selection, and receiver operating characteristics analysis for predictive performance assessment. The nomogram's performance was evaluated using decision curve analysis (DCA).</div></div><div><h3>Results</h3><div>Ten DCE-MRI features were identified to build the predictive model of HNSCC, demonstrating excellent predictive value for Ki-67 status in both the training set (AUC of 0.943) and test set (AUC of 0.801). The nomograms based on the predictive model showed good fit in the calibration curves (<em>p</em> > 0.05), and DCA indicated its high clinical usefulness. In subgroup analysis of OSCC, fourteen features were selected to build the predictive model for Ki-67 status with an AUC of 0.960 in training set and 0.817 in test set. No features could be included to establish a model to predict p16 status.</div></div><div><h3>Conclusion</h3><div>The radiomics model utilizing DCE-MRI features could effectively predict Ki-67 status in HNSCC patients, offering potential for noninvasive preoperative prediction of Ki-67 status.</div></div>\",\"PeriodicalId\":18165,\"journal\":{\"name\":\"Magnetic resonance imaging\",\"volume\":\"116 \",\"pages\":\"Article 110276\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0730725X24002571\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24002571","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Radiomic features of dynamic contrast-enhanced MRI can predict Ki-67 status in head and neck squamous cell carcinoma
Purpose
This study aimed to investigate the potential of radiomic features derived from dynamic contrast-enhanced MRI (DCE-MRI) in predicting Ki-67 and p16 status in head and neck squamous cell carcinoma (HNSCC).
Materials and methods
A cohort of 124 HNSCC patients who underwent pre-surgery DCE-MRI were included and divided into training and test set (7:3), further subgroup analysis was performed for 104 cases with oral squamous cell carcinoma (OSCC). Radiomics features were extracted from DCE images. The least absolute shrinkage and selection operator (LASSO) was used for radiomics features selection, and receiver operating characteristics analysis for predictive performance assessment. The nomogram's performance was evaluated using decision curve analysis (DCA).
Results
Ten DCE-MRI features were identified to build the predictive model of HNSCC, demonstrating excellent predictive value for Ki-67 status in both the training set (AUC of 0.943) and test set (AUC of 0.801). The nomograms based on the predictive model showed good fit in the calibration curves (p > 0.05), and DCA indicated its high clinical usefulness. In subgroup analysis of OSCC, fourteen features were selected to build the predictive model for Ki-67 status with an AUC of 0.960 in training set and 0.817 in test set. No features could be included to establish a model to predict p16 status.
Conclusion
The radiomics model utilizing DCE-MRI features could effectively predict Ki-67 status in HNSCC patients, offering potential for noninvasive preoperative prediction of Ki-67 status.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.