用于体表引导放疗中实时肿瘤跟踪的患者特异性 CBCT 合成。

ArXiv Pub Date : 2024-11-01
Shaoyan Pan, Vanessa Su, Junbo Peng, Junyuan Li, Yuan Gao, Chih-Wei Chang, Tonghe Wang, Zhen Tian, Xiaofeng Yang
{"title":"用于体表引导放疗中实时肿瘤跟踪的患者特异性 CBCT 合成。","authors":"Shaoyan Pan, Vanessa Su, Junbo Peng, Junyuan Li, Yuan Gao, Chih-Wei Chang, Tonghe Wang, Zhen Tian, Xiaofeng Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we present a new imaging system to support real-time tumor tracking for surface-guided radiotherapy (SGRT). SGRT uses optical surface imaging (OSI) to acquire real-time surface topography images of the patient on the treatment couch. This serves as a surrogate for intra-fractional tumor motion tracking to guide radiation delivery. However, OSI cannot visualize internal anatomy, leading to motion tracking uncertainties for internal tumors, as body surface motion often does not have a good correlation with the internal tumor motion, particularly for lung cancer. This study proposes an Advanced Surface Imaging (A-SI) framework to address this issue. In the proposed A-SI framework, a high-speed surface imaging camera consistently captures surface images during radiation delivery, and a CBCT imager captures single-angle X-ray projections at low frequency. The A-SI then utilizes a generative model to generate real-time volumetric images with full anatomy, referred to as Optical Surface-Derived cone beam computed tomography (OSD-CBCT), based on the real-time high-frequent surface images and the low-frequency collected single-angle X-ray projections. The generated OSD-CBCT can provide accurate tumor motion for precise radiation delivery. The A-SI framework uses a patient-specific generative model: physics-integrated consistency-refinement denoising diffusion probabilistic model (PC-DDPM). This model leverages patient-specific anatomical structures and respiratory motion patterns derived from four-dimensional CT (4DCT) during treatment planning. It then employs a geometric transformation module (GTM) to extract volumetric anatomy information from the single-angle X-ray projection. A physics-integrated and cycle-consistency refinement strategy uses this information and the surface images to guide the DDPM, generating high quality OSD-CBCTs throughout the entire radiation delivery. A simulation study with 22 lung cancer patients evaluated the A-SI framework supported by PC-DDPM. The results showed that the framework produced real-time OSD-CBCT with high reconstruction fidelity and precise tumor localization. These results were validated through comprehensive intensity-, structural-, visual-, and clinical-level assessments. This study demonstrates the potential of A-SI to enable real-time tumor tracking with minimal imaging dose, advancing SGRT for motion-associated cancers and interventional procedures.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Patient-Specific CBCT Synthesis for Real-time Tumor Tracking in Surface-guided Radiotherapy.\",\"authors\":\"Shaoyan Pan, Vanessa Su, Junbo Peng, Junyuan Li, Yuan Gao, Chih-Wei Chang, Tonghe Wang, Zhen Tian, Xiaofeng Yang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we present a new imaging system to support real-time tumor tracking for surface-guided radiotherapy (SGRT). SGRT uses optical surface imaging (OSI) to acquire real-time surface topography images of the patient on the treatment couch. This serves as a surrogate for intra-fractional tumor motion tracking to guide radiation delivery. However, OSI cannot visualize internal anatomy, leading to motion tracking uncertainties for internal tumors, as body surface motion often does not have a good correlation with the internal tumor motion, particularly for lung cancer. This study proposes an Advanced Surface Imaging (A-SI) framework to address this issue. In the proposed A-SI framework, a high-speed surface imaging camera consistently captures surface images during radiation delivery, and a CBCT imager captures single-angle X-ray projections at low frequency. The A-SI then utilizes a generative model to generate real-time volumetric images with full anatomy, referred to as Optical Surface-Derived cone beam computed tomography (OSD-CBCT), based on the real-time high-frequent surface images and the low-frequency collected single-angle X-ray projections. The generated OSD-CBCT can provide accurate tumor motion for precise radiation delivery. The A-SI framework uses a patient-specific generative model: physics-integrated consistency-refinement denoising diffusion probabilistic model (PC-DDPM). This model leverages patient-specific anatomical structures and respiratory motion patterns derived from four-dimensional CT (4DCT) during treatment planning. It then employs a geometric transformation module (GTM) to extract volumetric anatomy information from the single-angle X-ray projection. A physics-integrated and cycle-consistency refinement strategy uses this information and the surface images to guide the DDPM, generating high quality OSD-CBCTs throughout the entire radiation delivery. A simulation study with 22 lung cancer patients evaluated the A-SI framework supported by PC-DDPM. The results showed that the framework produced real-time OSD-CBCT with high reconstruction fidelity and precise tumor localization. These results were validated through comprehensive intensity-, structural-, visual-, and clinical-level assessments. This study demonstrates the potential of A-SI to enable real-time tumor tracking with minimal imaging dose, advancing SGRT for motion-associated cancers and interventional procedures.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种新的成像系统,用于支持表面引导放射治疗(SGRT)的实时肿瘤跟踪。SGRT 使用光学表面成像(OSI)来获取患者在治疗床上的实时表面形貌图像。然而,OSI 无法显示内部解剖结构。本研究提出了高级表面成像(A-SI)框架来解决这一问题。在所提出的 A-SI 框架中,高速表面成像摄像机会在放射治疗过程中持续捕捉表面图像,而 CBCT 成像仪则会以低频捕捉单角 X 射线投影。然后,A-SI 利用生成模型,根据实时高频表面图像和低频采集的单角 X 射线投影,生成具有完整解剖结构的实时容积图像,即光学表面衍生锥形束计算机断层扫描(OSD-CBCT)。生成的 OSD-CBCT 可以提供精确的肿瘤运动,从而实现精确放射。A-SI 框架使用患者特异性生成模型:物理集成一致性-改进去噪扩散概率模型(PC-DDPM)。该模型利用患者特定的解剖结构和四维 CT(4DCT)在治疗计划中得出的呼吸运动模式。然后,它采用几何变换模块(GTM)从单角 X 射线投影中提取容积解剖信息。一项针对 22 名肺癌患者的模拟研究对 PC-DDPM 支持的 A-SI 框架进行了评估。结果表明,该框架能生成具有高重建保真度和精确肿瘤定位的实时 OSD-CBCT。这项研究证明了 A-SI 在以最小的成像剂量实现实时肿瘤跟踪方面的潜力,从而推动了针对运动相关癌症和介入手术的 SGRT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Patient-Specific CBCT Synthesis for Real-time Tumor Tracking in Surface-guided Radiotherapy.

In this work, we present a new imaging system to support real-time tumor tracking for surface-guided radiotherapy (SGRT). SGRT uses optical surface imaging (OSI) to acquire real-time surface topography images of the patient on the treatment couch. This serves as a surrogate for intra-fractional tumor motion tracking to guide radiation delivery. However, OSI cannot visualize internal anatomy, leading to motion tracking uncertainties for internal tumors, as body surface motion often does not have a good correlation with the internal tumor motion, particularly for lung cancer. This study proposes an Advanced Surface Imaging (A-SI) framework to address this issue. In the proposed A-SI framework, a high-speed surface imaging camera consistently captures surface images during radiation delivery, and a CBCT imager captures single-angle X-ray projections at low frequency. The A-SI then utilizes a generative model to generate real-time volumetric images with full anatomy, referred to as Optical Surface-Derived cone beam computed tomography (OSD-CBCT), based on the real-time high-frequent surface images and the low-frequency collected single-angle X-ray projections. The generated OSD-CBCT can provide accurate tumor motion for precise radiation delivery. The A-SI framework uses a patient-specific generative model: physics-integrated consistency-refinement denoising diffusion probabilistic model (PC-DDPM). This model leverages patient-specific anatomical structures and respiratory motion patterns derived from four-dimensional CT (4DCT) during treatment planning. It then employs a geometric transformation module (GTM) to extract volumetric anatomy information from the single-angle X-ray projection. A physics-integrated and cycle-consistency refinement strategy uses this information and the surface images to guide the DDPM, generating high quality OSD-CBCTs throughout the entire radiation delivery. A simulation study with 22 lung cancer patients evaluated the A-SI framework supported by PC-DDPM. The results showed that the framework produced real-time OSD-CBCT with high reconstruction fidelity and precise tumor localization. These results were validated through comprehensive intensity-, structural-, visual-, and clinical-level assessments. This study demonstrates the potential of A-SI to enable real-time tumor tracking with minimal imaging dose, advancing SGRT for motion-associated cancers and interventional procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VEPerform: a web resource for evaluating the performance of variant effect predictors. Metastability in networks of nonlinear stochastic integrate-and-fire neurons. Differential learning kinetics govern the transition from memorization to generalization during in-context learning. On the linear scaling of entropy vs. energy in human brain activity, the Hagedorn temperature and the Zipf law. Correlation-weighted 23Na magnetic resonance fingerprinting in the brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1