ProtPipe:用于蛋白质组学和肽组学的多功能数据分析管道。

Ziyi Li, Cory A Weller, Syed Shah, Nicholas L Johnson, Ying Hao, Paige B Jarreau, Jessica Roberts, Deyaan Guha, Colleen Bereda, Sydney Klaisner, Pedro Machado, Matteo Zanovello, Mercedes Prudencio, Björn Oskarsson, Nathan P Staff, Dennis W Dickson, Pietro Fratta, Leonard Petrucelli, Priyanka Narayan, Mark R Cookson, Michael E Ward, Andrew B Singleton, Mike A Nalls, Yue A Qi
{"title":"ProtPipe:用于蛋白质组学和肽组学的多功能数据分析管道。","authors":"Ziyi Li, Cory A Weller, Syed Shah, Nicholas L Johnson, Ying Hao, Paige B Jarreau, Jessica Roberts, Deyaan Guha, Colleen Bereda, Sydney Klaisner, Pedro Machado, Matteo Zanovello, Mercedes Prudencio, Björn Oskarsson, Nathan P Staff, Dennis W Dickson, Pietro Fratta, Leonard Petrucelli, Priyanka Narayan, Mark R Cookson, Michael E Ward, Andrew B Singleton, Mike A Nalls, Yue A Qi","doi":"10.1093/gpbjnl/qzae083","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry (MS) is a technique widely employed for the identification and characterization of proteins, with personalized medicine, systems biology, and biomedical applications. The application of MS-based proteomics advances our understanding of protein function, cellular signaling, and complex biological systems. MS data analysis is a critical process that includes identifying and quantifying proteins and peptides and then exploring their biological functions in downstream analysis. To address the complexities associated with MS data analysis, we developed ProtPipe to streamline and automate the processing and analysis of high-throughput proteomics and peptidomics datasets with DIA-NN preinstalled. The pipeline facilitates data quality control, sample filtering, and normalization, ensuring robust and reliable downstream analyses. ProtPipe provides downstream analyses, including protein and peptide differential abundance identification, pathway enrichment analysis, protein-protein interaction analysis, and Major histocompatibility complex (MHC) -peptide binding affinity analysis. ProtPipe generates annotated tables and visualizations by performing statistical postprocessing and calculating fold changes between predefined pairwise conditions in an experimental design. It is an open-source, well-documented tool available online at https://github.com/NIH-CARD/ProtPipe, with a user-friendly web interface.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ProtPipe: A Multifunctional Data Analysis Pipeline for Proteomics and Peptidomics.\",\"authors\":\"Ziyi Li, Cory A Weller, Syed Shah, Nicholas L Johnson, Ying Hao, Paige B Jarreau, Jessica Roberts, Deyaan Guha, Colleen Bereda, Sydney Klaisner, Pedro Machado, Matteo Zanovello, Mercedes Prudencio, Björn Oskarsson, Nathan P Staff, Dennis W Dickson, Pietro Fratta, Leonard Petrucelli, Priyanka Narayan, Mark R Cookson, Michael E Ward, Andrew B Singleton, Mike A Nalls, Yue A Qi\",\"doi\":\"10.1093/gpbjnl/qzae083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mass spectrometry (MS) is a technique widely employed for the identification and characterization of proteins, with personalized medicine, systems biology, and biomedical applications. The application of MS-based proteomics advances our understanding of protein function, cellular signaling, and complex biological systems. MS data analysis is a critical process that includes identifying and quantifying proteins and peptides and then exploring their biological functions in downstream analysis. To address the complexities associated with MS data analysis, we developed ProtPipe to streamline and automate the processing and analysis of high-throughput proteomics and peptidomics datasets with DIA-NN preinstalled. The pipeline facilitates data quality control, sample filtering, and normalization, ensuring robust and reliable downstream analyses. ProtPipe provides downstream analyses, including protein and peptide differential abundance identification, pathway enrichment analysis, protein-protein interaction analysis, and Major histocompatibility complex (MHC) -peptide binding affinity analysis. ProtPipe generates annotated tables and visualizations by performing statistical postprocessing and calculating fold changes between predefined pairwise conditions in an experimental design. It is an open-source, well-documented tool available online at https://github.com/NIH-CARD/ProtPipe, with a user-friendly web interface.</p>\",\"PeriodicalId\":94020,\"journal\":{\"name\":\"Genomics, proteomics & bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzae083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

质谱(MS)是一种广泛应用于蛋白质鉴定和表征的技术,在个性化医疗、系统生物学和生物医学方面都有应用。基于质谱的蛋白质组学的应用促进了我们对蛋白质功能、细胞信号传导和复杂生物系统的了解。质谱数据分析是一个关键过程,包括蛋白质和肽的鉴定和定量,然后在下游分析中探索其生物功能。为了解决 MS 数据分析的复杂性,我们开发了 ProtPipe,以简化和自动化预装 DIA-NN 的高通量蛋白质组学和多肽组学数据集的处理和分析。该管道有助于数据质量控制、样品过滤和归一化,确保下游分析稳健可靠。ProtPipe 提供下游分析,包括蛋白质和多肽差异丰度鉴定、通路富集分析、蛋白质-蛋白质相互作用分析以及主要组织相容性复合体 (MHC) - 多肽结合亲和力分析。ProtPipe 通过执行统计后处理和计算实验设计中预定义配对条件之间的折叠变化,生成带注释的表格和可视化效果。它是一个开源的、文档齐全的工具,可在 https://github.com/NIH-CARD/ProtPipe 上在线获取,具有用户友好的 Web 界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ProtPipe: A Multifunctional Data Analysis Pipeline for Proteomics and Peptidomics.

Mass spectrometry (MS) is a technique widely employed for the identification and characterization of proteins, with personalized medicine, systems biology, and biomedical applications. The application of MS-based proteomics advances our understanding of protein function, cellular signaling, and complex biological systems. MS data analysis is a critical process that includes identifying and quantifying proteins and peptides and then exploring their biological functions in downstream analysis. To address the complexities associated with MS data analysis, we developed ProtPipe to streamline and automate the processing and analysis of high-throughput proteomics and peptidomics datasets with DIA-NN preinstalled. The pipeline facilitates data quality control, sample filtering, and normalization, ensuring robust and reliable downstream analyses. ProtPipe provides downstream analyses, including protein and peptide differential abundance identification, pathway enrichment analysis, protein-protein interaction analysis, and Major histocompatibility complex (MHC) -peptide binding affinity analysis. ProtPipe generates annotated tables and visualizations by performing statistical postprocessing and calculating fold changes between predefined pairwise conditions in an experimental design. It is an open-source, well-documented tool available online at https://github.com/NIH-CARD/ProtPipe, with a user-friendly web interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iMFP-LG: Identification of Novel Multi-Functional Peptides by Using Protein Language Models and Graph-Based Deep Learning. ProtPipe: A Multifunctional Data Analysis Pipeline for Proteomics and Peptidomics. VISTA: A Tool for Fast Taxonomic Assignment of Viral Genome Sequences. Pangenome Reveals Gene Content Variations and Structural Variants Contributing to Pig Characteristics. SoyOD: An Integrated Soybean Multi-omics Database for Mining Genes and Biological Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1