Katarzyna Makasewicz, Timo N Schneider, Prerit Mathur, Stavros Stavrakis, Andrew J deMello, Paolo Arosio
{"title":"通过蛋白质-RNA凝结物的老化形成多室结构","authors":"Katarzyna Makasewicz, Timo N Schneider, Prerit Mathur, Stavros Stavrakis, Andrew J deMello, Paolo Arosio","doi":"10.1016/j.bpj.2024.11.014","DOIUrl":null,"url":null,"abstract":"<p><p>Cells can dynamically organize reactions through the formation of biomolecular condensates. These viscoelastic networks exhibit complex material properties and mesoscale architectures, including the ability to form multi-phase assemblies. It was shown previously that condensates with complex architectures may arise at equilibrium in multicomponent systems or in condensates that were driven out-of-equilibrium by changes in external parameters such as temperature. In this study, we demonstrate that the aging of initially homogeneous protein-RNA condensates can spontaneously lead to the formation of kinetically arrested double-emulsion and core-shell structures without changes in external variables such as temperature or solution conditions. By combining time-resolved fluorescence-based experimental techniques with simulations based on the Cahn-Hilliard theory, we show that, as the protein-RNA condensates age, the decrease of the relative strength of protein-RNA interactions induces the release of RNA molecules from the dense phase. In condensates exceeding a critical size, aging combined with slow diffusion of the macromolecules trigger nucleation of dilute phase inside the condensates, which leads to the formation of double-emulsion structures. These findings illustrate a new mechanism of formation of multi-compartment condensates.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of Multi-Compartment Structures through Aging of Protein-RNA Condensates.\",\"authors\":\"Katarzyna Makasewicz, Timo N Schneider, Prerit Mathur, Stavros Stavrakis, Andrew J deMello, Paolo Arosio\",\"doi\":\"10.1016/j.bpj.2024.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells can dynamically organize reactions through the formation of biomolecular condensates. These viscoelastic networks exhibit complex material properties and mesoscale architectures, including the ability to form multi-phase assemblies. It was shown previously that condensates with complex architectures may arise at equilibrium in multicomponent systems or in condensates that were driven out-of-equilibrium by changes in external parameters such as temperature. In this study, we demonstrate that the aging of initially homogeneous protein-RNA condensates can spontaneously lead to the formation of kinetically arrested double-emulsion and core-shell structures without changes in external variables such as temperature or solution conditions. By combining time-resolved fluorescence-based experimental techniques with simulations based on the Cahn-Hilliard theory, we show that, as the protein-RNA condensates age, the decrease of the relative strength of protein-RNA interactions induces the release of RNA molecules from the dense phase. In condensates exceeding a critical size, aging combined with slow diffusion of the macromolecules trigger nucleation of dilute phase inside the condensates, which leads to the formation of double-emulsion structures. These findings illustrate a new mechanism of formation of multi-compartment condensates.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.11.014\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.11.014","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Formation of Multi-Compartment Structures through Aging of Protein-RNA Condensates.
Cells can dynamically organize reactions through the formation of biomolecular condensates. These viscoelastic networks exhibit complex material properties and mesoscale architectures, including the ability to form multi-phase assemblies. It was shown previously that condensates with complex architectures may arise at equilibrium in multicomponent systems or in condensates that were driven out-of-equilibrium by changes in external parameters such as temperature. In this study, we demonstrate that the aging of initially homogeneous protein-RNA condensates can spontaneously lead to the formation of kinetically arrested double-emulsion and core-shell structures without changes in external variables such as temperature or solution conditions. By combining time-resolved fluorescence-based experimental techniques with simulations based on the Cahn-Hilliard theory, we show that, as the protein-RNA condensates age, the decrease of the relative strength of protein-RNA interactions induces the release of RNA molecules from the dense phase. In condensates exceeding a critical size, aging combined with slow diffusion of the macromolecules trigger nucleation of dilute phase inside the condensates, which leads to the formation of double-emulsion structures. These findings illustrate a new mechanism of formation of multi-compartment condensates.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.