Yuhan Zhang, Jianxiao Zhao, Xi Sun, Yangyang Zheng, Tao Chen, Zhiwen Wang
{"title":"利用独立成分分析揭示转录调控网络:重要综述与未来方向。","authors":"Yuhan Zhang, Jianxiao Zhao, Xi Sun, Yangyang Zheng, Tao Chen, Zhiwen Wang","doi":"10.1016/j.biotechadv.2024.108479","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptional regulatory networks (TRNs) play a crucial role in exploring microbial life activities and complex regulatory mechanisms. The comprehensive reconstruction of TRNs requires the integration of large-scale experimental data, which poses significant challenges due to the complexity of regulatory relationships. The application of machine learning tools, such as clustering analysis, has been employed to investigate TRNs, but these methods have limitations in capturing both global and local co-expression effects. In contrast, Independent Component Analysis (ICA) has emerged as a powerful analysis algorithm for modularizing independently regulated gene sets in TRNs, allowing it to account for both global and local co-expression effects. In this review, we comprehensively summarize the application of ICA in unraveling TRNs and highlight the research progress in three key aspects: (1) extending TRNs with iModulon analysis; (2) elucidating the regulatory mechanisms triggered by environmental perturbation; and (3) exploring the mechanisms of transcriptional regulation triggered by changes in microbial physiological state. At the end of this review, we also address the challenges facing ICA in TRN analysis and outline future research directions to promote the advancement of ICA-based transcriptomics analysis in biotechnology and related fields.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108479"},"PeriodicalIF":12.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging independent component analysis to unravel transcriptional regulatory networks: A critical review and future directions.\",\"authors\":\"Yuhan Zhang, Jianxiao Zhao, Xi Sun, Yangyang Zheng, Tao Chen, Zhiwen Wang\",\"doi\":\"10.1016/j.biotechadv.2024.108479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcriptional regulatory networks (TRNs) play a crucial role in exploring microbial life activities and complex regulatory mechanisms. The comprehensive reconstruction of TRNs requires the integration of large-scale experimental data, which poses significant challenges due to the complexity of regulatory relationships. The application of machine learning tools, such as clustering analysis, has been employed to investigate TRNs, but these methods have limitations in capturing both global and local co-expression effects. In contrast, Independent Component Analysis (ICA) has emerged as a powerful analysis algorithm for modularizing independently regulated gene sets in TRNs, allowing it to account for both global and local co-expression effects. In this review, we comprehensively summarize the application of ICA in unraveling TRNs and highlight the research progress in three key aspects: (1) extending TRNs with iModulon analysis; (2) elucidating the regulatory mechanisms triggered by environmental perturbation; and (3) exploring the mechanisms of transcriptional regulation triggered by changes in microbial physiological state. At the end of this review, we also address the challenges facing ICA in TRN analysis and outline future research directions to promote the advancement of ICA-based transcriptomics analysis in biotechnology and related fields.</p>\",\"PeriodicalId\":8946,\"journal\":{\"name\":\"Biotechnology advances\",\"volume\":\" \",\"pages\":\"108479\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology advances\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biotechadv.2024.108479\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biotechadv.2024.108479","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Leveraging independent component analysis to unravel transcriptional regulatory networks: A critical review and future directions.
Transcriptional regulatory networks (TRNs) play a crucial role in exploring microbial life activities and complex regulatory mechanisms. The comprehensive reconstruction of TRNs requires the integration of large-scale experimental data, which poses significant challenges due to the complexity of regulatory relationships. The application of machine learning tools, such as clustering analysis, has been employed to investigate TRNs, but these methods have limitations in capturing both global and local co-expression effects. In contrast, Independent Component Analysis (ICA) has emerged as a powerful analysis algorithm for modularizing independently regulated gene sets in TRNs, allowing it to account for both global and local co-expression effects. In this review, we comprehensively summarize the application of ICA in unraveling TRNs and highlight the research progress in three key aspects: (1) extending TRNs with iModulon analysis; (2) elucidating the regulatory mechanisms triggered by environmental perturbation; and (3) exploring the mechanisms of transcriptional regulation triggered by changes in microbial physiological state. At the end of this review, we also address the challenges facing ICA in TRN analysis and outline future research directions to promote the advancement of ICA-based transcriptomics analysis in biotechnology and related fields.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.