{"title":"从人类和啮齿动物的角度看情感与时间的交汇:杏仁核的核心作用?","authors":"Valérie Doyère, Sylvie Droit-Volet","doi":"10.1093/cercor/bhae454","DOIUrl":null,"url":null,"abstract":"<p><p>Initiated by a long stay of Valérie Doyère in the laboratory of Joseph LeDoux, a Franco-American collaborative group was formed around the topic of emotion and time perception in a comparative perspective between humans and non-human animals. Here, we discuss results from our studies on the mechanisms underlying time distortion under 2 conditions, timing of a threatening stimulus and timing of a neutral stimulus in the context of fear, with insights from neurodevelopment. Although the type of temporal distortion depends on the experimental situations, in both humans and rodents a high-arousal emotion automatically triggers acceleration of an \"internal clock\" system, an effect that may rely on the early maturing amygdala. Our studies, particularly in humans, also point to the role of attention and self-awareness in regulating the effect of fear on timing, relying on the prefrontal cortex, a late maturing structure. Thus, in line with LeDoux, while the amygdala may process all characteristics of events (including time) necessary to quickly trigger appropriate survival behaviors, some type of time distortions may rely on higher-order processing, some specific to humans. The extent of the network underlying threat-related time distortions remains to be explored, with species comparisons being a promising means of investigation.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When emotion and time meet from human and rodent perspectives: a central role for the amygdala?\",\"authors\":\"Valérie Doyère, Sylvie Droit-Volet\",\"doi\":\"10.1093/cercor/bhae454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Initiated by a long stay of Valérie Doyère in the laboratory of Joseph LeDoux, a Franco-American collaborative group was formed around the topic of emotion and time perception in a comparative perspective between humans and non-human animals. Here, we discuss results from our studies on the mechanisms underlying time distortion under 2 conditions, timing of a threatening stimulus and timing of a neutral stimulus in the context of fear, with insights from neurodevelopment. Although the type of temporal distortion depends on the experimental situations, in both humans and rodents a high-arousal emotion automatically triggers acceleration of an \\\"internal clock\\\" system, an effect that may rely on the early maturing amygdala. Our studies, particularly in humans, also point to the role of attention and self-awareness in regulating the effect of fear on timing, relying on the prefrontal cortex, a late maturing structure. Thus, in line with LeDoux, while the amygdala may process all characteristics of events (including time) necessary to quickly trigger appropriate survival behaviors, some type of time distortions may rely on higher-order processing, some specific to humans. The extent of the network underlying threat-related time distortions remains to be explored, with species comparisons being a promising means of investigation.</p>\",\"PeriodicalId\":9715,\"journal\":{\"name\":\"Cerebral cortex\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhae454\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae454","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
When emotion and time meet from human and rodent perspectives: a central role for the amygdala?
Initiated by a long stay of Valérie Doyère in the laboratory of Joseph LeDoux, a Franco-American collaborative group was formed around the topic of emotion and time perception in a comparative perspective between humans and non-human animals. Here, we discuss results from our studies on the mechanisms underlying time distortion under 2 conditions, timing of a threatening stimulus and timing of a neutral stimulus in the context of fear, with insights from neurodevelopment. Although the type of temporal distortion depends on the experimental situations, in both humans and rodents a high-arousal emotion automatically triggers acceleration of an "internal clock" system, an effect that may rely on the early maturing amygdala. Our studies, particularly in humans, also point to the role of attention and self-awareness in regulating the effect of fear on timing, relying on the prefrontal cortex, a late maturing structure. Thus, in line with LeDoux, while the amygdala may process all characteristics of events (including time) necessary to quickly trigger appropriate survival behaviors, some type of time distortions may rely on higher-order processing, some specific to humans. The extent of the network underlying threat-related time distortions remains to be explored, with species comparisons being a promising means of investigation.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.