Ana M. Muñoz-González, Dianney Clavijo-Grimaldo, Sara Leal-Marin, Birgit Glasmacher
{"title":"优化导电 PPy-PCL 支架,提高组织工程性能。","authors":"Ana M. Muñoz-González, Dianney Clavijo-Grimaldo, Sara Leal-Marin, Birgit Glasmacher","doi":"10.1002/jbm.b.35511","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The integration of electrically conductive materials is a promising approach in tissue regeneration research. The study presented focuses on the creation of electroconductive scaffolds made from polypyrrole-polycaprolactone (PPy-PCL) using optimal processing parameters. Utilizing Box–Behnken response surface methodology for in situ chemical polymerization of PPy, the scaffolds exhibited a maximum conductivity of 2.542 mS/cm. Morphological examination via scanning electron microscopy (SEM) indicated uniform dispersion of PPy particles within PCL fibers. Fourier transform infrared spectroscopy (FTIR) and energy dispersive x-ray (EDX) analysis validated the composition of the scaffolds, while mechanical testing revealed that the optimized scaffolds exhibit superior tensile strength and Young's modulus compared to scaffolds comprised only of PCL. The hydrophilicity of the scaffolds was improved considerably, transitioning from initially hydrophobic to fully hydrophilic for the optimum scaffold, making it suitable for tissue engineering applications. Cell viability assays, including MTT with L929 fibroblasts and Alamar Blue with bone marrow mesenchymal stem cells (bmMSCs), reflected no cytotoxicity. They showed an increase in metabolic activity, suggesting the capability of the scaffolds to support cellular functions. In conclusion, the in situ synthesis of PPy in the PCL matrix by optimizing the fabrication parameters resulted in conductive scaffolds with promising structural and functional properties for tissue engineering.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Electroconductive PPy-PCL Scaffolds for Enhanced Tissue Engineering Performance\",\"authors\":\"Ana M. Muñoz-González, Dianney Clavijo-Grimaldo, Sara Leal-Marin, Birgit Glasmacher\",\"doi\":\"10.1002/jbm.b.35511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The integration of electrically conductive materials is a promising approach in tissue regeneration research. The study presented focuses on the creation of electroconductive scaffolds made from polypyrrole-polycaprolactone (PPy-PCL) using optimal processing parameters. Utilizing Box–Behnken response surface methodology for in situ chemical polymerization of PPy, the scaffolds exhibited a maximum conductivity of 2.542 mS/cm. Morphological examination via scanning electron microscopy (SEM) indicated uniform dispersion of PPy particles within PCL fibers. Fourier transform infrared spectroscopy (FTIR) and energy dispersive x-ray (EDX) analysis validated the composition of the scaffolds, while mechanical testing revealed that the optimized scaffolds exhibit superior tensile strength and Young's modulus compared to scaffolds comprised only of PCL. The hydrophilicity of the scaffolds was improved considerably, transitioning from initially hydrophobic to fully hydrophilic for the optimum scaffold, making it suitable for tissue engineering applications. Cell viability assays, including MTT with L929 fibroblasts and Alamar Blue with bone marrow mesenchymal stem cells (bmMSCs), reflected no cytotoxicity. They showed an increase in metabolic activity, suggesting the capability of the scaffolds to support cellular functions. In conclusion, the in situ synthesis of PPy in the PCL matrix by optimizing the fabrication parameters resulted in conductive scaffolds with promising structural and functional properties for tissue engineering.</p>\\n </div>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"112 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35511\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35511","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Optimizing Electroconductive PPy-PCL Scaffolds for Enhanced Tissue Engineering Performance
The integration of electrically conductive materials is a promising approach in tissue regeneration research. The study presented focuses on the creation of electroconductive scaffolds made from polypyrrole-polycaprolactone (PPy-PCL) using optimal processing parameters. Utilizing Box–Behnken response surface methodology for in situ chemical polymerization of PPy, the scaffolds exhibited a maximum conductivity of 2.542 mS/cm. Morphological examination via scanning electron microscopy (SEM) indicated uniform dispersion of PPy particles within PCL fibers. Fourier transform infrared spectroscopy (FTIR) and energy dispersive x-ray (EDX) analysis validated the composition of the scaffolds, while mechanical testing revealed that the optimized scaffolds exhibit superior tensile strength and Young's modulus compared to scaffolds comprised only of PCL. The hydrophilicity of the scaffolds was improved considerably, transitioning from initially hydrophobic to fully hydrophilic for the optimum scaffold, making it suitable for tissue engineering applications. Cell viability assays, including MTT with L929 fibroblasts and Alamar Blue with bone marrow mesenchymal stem cells (bmMSCs), reflected no cytotoxicity. They showed an increase in metabolic activity, suggesting the capability of the scaffolds to support cellular functions. In conclusion, the in situ synthesis of PPy in the PCL matrix by optimizing the fabrication parameters resulted in conductive scaffolds with promising structural and functional properties for tissue engineering.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.