Jack Gillespie, Aaron J. Cavosie, Denis Fougerouse, Cristiana L. Ciobanu, William D. A. Rickard, David W. Saxey, Gretchen K. Benedix, Phil A. Bland
{"title":"火星早期热液活动的锆石痕量元素证据。","authors":"Jack Gillespie, Aaron J. Cavosie, Denis Fougerouse, Cristiana L. Ciobanu, William D. A. Rickard, David W. Saxey, Gretchen K. Benedix, Phil A. Bland","doi":"10.1126/sciadv.adq3694","DOIUrl":null,"url":null,"abstract":"<div >Finding direct evidence for hydrous fluids on early Mars is of interest for understanding the origin of water on rocky planets, surface processes, and conditions essential for habitability, but it is challenging to obtain from martian meteorites. Micro- to nanoscale microscopy of a unique impact-shocked zircon from the regolith breccia meteorite NWA7034 reveals textural and chemical indicators of hydrothermal conditions on Mars during crystallization 4.45 billion years ago. Element distribution maps show sharp alternating zoning defined by marked enrichments of non-formula elements, such as Fe, Al, and Na, and ubiquitous nanoscale magnetite inclusions. The zoning and inclusions are similar to those reported in terrestrial zircon crystallizing in the presence of aqueous fluid and are here interpreted as primary features recording zircon growth from exsolved hydrous fluids at ~4.45 billion years. The unique record of crustal processes preserved in this grain survived early impact bombardment and provides previously unidentified petrological evidence for a wet pre-Noachian martian crust.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 47","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584009/pdf/","citationCount":"0","resultStr":"{\"title\":\"Zircon trace element evidence for early hydrothermal activity on Mars\",\"authors\":\"Jack Gillespie, Aaron J. Cavosie, Denis Fougerouse, Cristiana L. Ciobanu, William D. A. Rickard, David W. Saxey, Gretchen K. Benedix, Phil A. Bland\",\"doi\":\"10.1126/sciadv.adq3694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Finding direct evidence for hydrous fluids on early Mars is of interest for understanding the origin of water on rocky planets, surface processes, and conditions essential for habitability, but it is challenging to obtain from martian meteorites. Micro- to nanoscale microscopy of a unique impact-shocked zircon from the regolith breccia meteorite NWA7034 reveals textural and chemical indicators of hydrothermal conditions on Mars during crystallization 4.45 billion years ago. Element distribution maps show sharp alternating zoning defined by marked enrichments of non-formula elements, such as Fe, Al, and Na, and ubiquitous nanoscale magnetite inclusions. The zoning and inclusions are similar to those reported in terrestrial zircon crystallizing in the presence of aqueous fluid and are here interpreted as primary features recording zircon growth from exsolved hydrous fluids at ~4.45 billion years. The unique record of crustal processes preserved in this grain survived early impact bombardment and provides previously unidentified petrological evidence for a wet pre-Noachian martian crust.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"10 47\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584009/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq3694\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq3694","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Zircon trace element evidence for early hydrothermal activity on Mars
Finding direct evidence for hydrous fluids on early Mars is of interest for understanding the origin of water on rocky planets, surface processes, and conditions essential for habitability, but it is challenging to obtain from martian meteorites. Micro- to nanoscale microscopy of a unique impact-shocked zircon from the regolith breccia meteorite NWA7034 reveals textural and chemical indicators of hydrothermal conditions on Mars during crystallization 4.45 billion years ago. Element distribution maps show sharp alternating zoning defined by marked enrichments of non-formula elements, such as Fe, Al, and Na, and ubiquitous nanoscale magnetite inclusions. The zoning and inclusions are similar to those reported in terrestrial zircon crystallizing in the presence of aqueous fluid and are here interpreted as primary features recording zircon growth from exsolved hydrous fluids at ~4.45 billion years. The unique record of crustal processes preserved in this grain survived early impact bombardment and provides previously unidentified petrological evidence for a wet pre-Noachian martian crust.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.