Quan Cui, Hui Liu, Chuanzhuang Guo, Jianbin Wang, Yuehan Liu, Yaqi Zhao, Ruiming Wang, Piwu Li, Ting Wang, Junqing Wang, Nan Li
{"title":"基于高灵敏度人工传感器和锚蛋白 cwp2 的高通量筛选,提高脂肪溶解亚罗威氏菌的赤藓糖醇产量。","authors":"Quan Cui, Hui Liu, Chuanzhuang Guo, Jianbin Wang, Yuehan Liu, Yaqi Zhao, Ruiming Wang, Piwu Li, Ting Wang, Junqing Wang, Nan Li","doi":"10.1093/jimb/kuae045","DOIUrl":null,"url":null,"abstract":"<p><p>Yarrowia lipolytica is widely used for the industrial production of the natural sweetener erythritol. Despite improvements in fermentation process control and metabolic pathway regulation, bottlenecks still exist in terms of yield and screening technology. Therefore, we constructed an artificial sensor system for effective erythritol detection, established a single-cell droplet-based high-throughput screening system based on fluorescence-activated cell sorting, and obtained Y. lipolytica with improved erythritol production through mutagenesis and high-throughput screening. We used a droplet generator to co-cultivate Y. lipolytica 5-14 with Escherichia coli and used the E. coli fluorescent signal to detect the concentration of erythritol synthesized by Y. lipolytica 5-14 for high-throughput screening. Strains were subjected to UV mutagenesis for 120 s. Under optimized fermentation conditions using Y. lipolytica mutants in 96-well plates, the screening efficiency reached 16.7%. Y. lipolytica 5-14-E6 showed a 21% increase in erythritol to 109.84 g/L. After fermentation at 30°C in a 100 m3 fermenter for 75 h, the mutant Y. lipolytica 5-14-E6 erythritol yield reached 178 g/L.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the erythritol production of Yarrowia lipolytica by high-throughput screening based on highly sensitive artificial sensor and anchor protein cwp2.\",\"authors\":\"Quan Cui, Hui Liu, Chuanzhuang Guo, Jianbin Wang, Yuehan Liu, Yaqi Zhao, Ruiming Wang, Piwu Li, Ting Wang, Junqing Wang, Nan Li\",\"doi\":\"10.1093/jimb/kuae045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Yarrowia lipolytica is widely used for the industrial production of the natural sweetener erythritol. Despite improvements in fermentation process control and metabolic pathway regulation, bottlenecks still exist in terms of yield and screening technology. Therefore, we constructed an artificial sensor system for effective erythritol detection, established a single-cell droplet-based high-throughput screening system based on fluorescence-activated cell sorting, and obtained Y. lipolytica with improved erythritol production through mutagenesis and high-throughput screening. We used a droplet generator to co-cultivate Y. lipolytica 5-14 with Escherichia coli and used the E. coli fluorescent signal to detect the concentration of erythritol synthesized by Y. lipolytica 5-14 for high-throughput screening. Strains were subjected to UV mutagenesis for 120 s. Under optimized fermentation conditions using Y. lipolytica mutants in 96-well plates, the screening efficiency reached 16.7%. Y. lipolytica 5-14-E6 showed a 21% increase in erythritol to 109.84 g/L. After fermentation at 30°C in a 100 m3 fermenter for 75 h, the mutant Y. lipolytica 5-14-E6 erythritol yield reached 178 g/L.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuae045\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuae045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhancing the erythritol production of Yarrowia lipolytica by high-throughput screening based on highly sensitive artificial sensor and anchor protein cwp2.
Yarrowia lipolytica is widely used for the industrial production of the natural sweetener erythritol. Despite improvements in fermentation process control and metabolic pathway regulation, bottlenecks still exist in terms of yield and screening technology. Therefore, we constructed an artificial sensor system for effective erythritol detection, established a single-cell droplet-based high-throughput screening system based on fluorescence-activated cell sorting, and obtained Y. lipolytica with improved erythritol production through mutagenesis and high-throughput screening. We used a droplet generator to co-cultivate Y. lipolytica 5-14 with Escherichia coli and used the E. coli fluorescent signal to detect the concentration of erythritol synthesized by Y. lipolytica 5-14 for high-throughput screening. Strains were subjected to UV mutagenesis for 120 s. Under optimized fermentation conditions using Y. lipolytica mutants in 96-well plates, the screening efficiency reached 16.7%. Y. lipolytica 5-14-E6 showed a 21% increase in erythritol to 109.84 g/L. After fermentation at 30°C in a 100 m3 fermenter for 75 h, the mutant Y. lipolytica 5-14-E6 erythritol yield reached 178 g/L.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology