通过散射测量获得声学悬浮单粒子的复折射率

IF 2.3 3区 物理与天体物理 Q2 OPTICS Journal of Quantitative Spectroscopy & Radiative Transfer Pub Date : 2024-11-17 DOI:10.1016/j.jqsrt.2024.109269
Mikko Vuori, Antti Penttilä, Karri Muinonen, Heikki Suhonen, Joel Jääskeläinen
{"title":"通过散射测量获得声学悬浮单粒子的复折射率","authors":"Mikko Vuori,&nbsp;Antti Penttilä,&nbsp;Karri Muinonen,&nbsp;Heikki Suhonen,&nbsp;Joel Jääskeläinen","doi":"10.1016/j.jqsrt.2024.109269","DOIUrl":null,"url":null,"abstract":"<div><div>Sample properties such as shape and size can be studied via light scattering, if the material complex refractive index is known. A numerical method which utilizes laboratory measurements for deriving the complex refractive index of a mm-sized single particle is introduced. The laboratory measurements are carried out using a <span><math><mrow><mn>4</mn><mi>π</mi></mrow></math></span> scatterometer that measures the intensity of polarized light scattered from an acoustically levitated sample in a fixed orientation as a function of scattering angle. To obtain the complex refractive index of the particle, measurements were compared to simulations done using a newly modified SIRIS4 Fixed Orientation geometric optics code. The real and imaginary part of the complex refractive index were varied in the simulations to find the best match between measurements and simulations. The complex refractive index of a levitated single particle was successfully derived in a specific wavelength using two different methods of translating sample orientation from measurements to simulations. For the first time, scattering matrix results from a measurement of a levitated mm-sized single particle in a fixed orientation were compared to light scattering simulations. The complex refractive index of a glass particle was derived successfully, verifying our method of refractive index retrieval from such measurements.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"331 ","pages":"Article 109269"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex refractive index from scattering measurements for an acoustically levitated single particle\",\"authors\":\"Mikko Vuori,&nbsp;Antti Penttilä,&nbsp;Karri Muinonen,&nbsp;Heikki Suhonen,&nbsp;Joel Jääskeläinen\",\"doi\":\"10.1016/j.jqsrt.2024.109269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sample properties such as shape and size can be studied via light scattering, if the material complex refractive index is known. A numerical method which utilizes laboratory measurements for deriving the complex refractive index of a mm-sized single particle is introduced. The laboratory measurements are carried out using a <span><math><mrow><mn>4</mn><mi>π</mi></mrow></math></span> scatterometer that measures the intensity of polarized light scattered from an acoustically levitated sample in a fixed orientation as a function of scattering angle. To obtain the complex refractive index of the particle, measurements were compared to simulations done using a newly modified SIRIS4 Fixed Orientation geometric optics code. The real and imaginary part of the complex refractive index were varied in the simulations to find the best match between measurements and simulations. The complex refractive index of a levitated single particle was successfully derived in a specific wavelength using two different methods of translating sample orientation from measurements to simulations. For the first time, scattering matrix results from a measurement of a levitated mm-sized single particle in a fixed orientation were compared to light scattering simulations. The complex refractive index of a glass particle was derived successfully, verifying our method of refractive index retrieval from such measurements.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"331 \",\"pages\":\"Article 109269\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003765\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003765","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

如果知道材料的复折射率,就可以通过光散射来研究样品的形状和尺寸等特性。本文介绍了一种利用实验室测量得出毫米大小单颗粒复折射率的数值方法。实验室测量是利用 4π 散射计进行的,该散射计测量从固定方向的声学悬浮样品散射的偏振光强度与散射角的函数关系。为了获得粒子的复折射率,测量结果与使用新修改的 SIRIS4 固定方向几何光学代码进行的模拟结果进行了比较。在模拟中改变复折射率的实部和虚部,以找到测量和模拟之间的最佳匹配。使用两种不同的方法将样品方位从测量转换到模拟,成功得出了悬浮单粒子在特定波长下的复折射率。首次将固定方位悬浮毫米大小单颗粒的测量散射矩阵结果与光散射模拟结果进行了比较。成功得出了玻璃颗粒的复折射率,验证了我们从此类测量中获取折射率的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complex refractive index from scattering measurements for an acoustically levitated single particle
Sample properties such as shape and size can be studied via light scattering, if the material complex refractive index is known. A numerical method which utilizes laboratory measurements for deriving the complex refractive index of a mm-sized single particle is introduced. The laboratory measurements are carried out using a 4π scatterometer that measures the intensity of polarized light scattered from an acoustically levitated sample in a fixed orientation as a function of scattering angle. To obtain the complex refractive index of the particle, measurements were compared to simulations done using a newly modified SIRIS4 Fixed Orientation geometric optics code. The real and imaginary part of the complex refractive index were varied in the simulations to find the best match between measurements and simulations. The complex refractive index of a levitated single particle was successfully derived in a specific wavelength using two different methods of translating sample orientation from measurements to simulations. For the first time, scattering matrix results from a measurement of a levitated mm-sized single particle in a fixed orientation were compared to light scattering simulations. The complex refractive index of a glass particle was derived successfully, verifying our method of refractive index retrieval from such measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
期刊最新文献
L-shell x-ray fluorescence relative intensities for elements with 64≤Z≤83 at 21 keV and 25 keV by synchrotron radiation Multispectral stealth structures for simultaneous visible-infrared stealth and efficient heat dissipation Water isotope spectroscopy near 2.6μm for D/H, 18O/16O, and 17O/16O analysis in planetary bodies Energy levels, transition probabilities, and wavelengths for Ga-like Ag, Cd, and In ions Compilation of empirical and semi-empirical Kα1, Kα2, Kβ1′, and Kβ2′ X-ray fluorescence cross-sections by the application of fitting approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1