Charlotte Kunze, Dominik Bahlburg, Pablo Urrutia-Cordero, Maren Striebel, Egle Kelpsiene, Silke Langenheder, Ian Donohue, Helmut Hillebrand
{"title":"划分物种对受干扰群落生态稳定性的贡献","authors":"Charlotte Kunze, Dominik Bahlburg, Pablo Urrutia-Cordero, Maren Striebel, Egle Kelpsiene, Silke Langenheder, Ian Donohue, Helmut Hillebrand","doi":"10.1002/ecm.1636","DOIUrl":null,"url":null,"abstract":"Ecosystems worldwide are experiencing a range of natural and anthropogenic disturbances, many of which are intensifying as global change accelerates. Ecological responses to those disturbances are determined by both the vulnerabilities of species and their interspecific interactions. Understanding how individual species contribute to the (in-)stability of an aggregated community property, or function, is fundamental to ecological management and conservation. Here, we present a framework to identify species contributions to stability based on their absolute and relative responses to disturbances. Using simulations, we show that these two dimensions enable identification of (de-)stabilizing species and reveal that competitive dominance determines the magnitude of both absolute and relative contributions to stability. Applying our framework to empirical data from a multi-site mesocosm experiment showed that species contributions varied among treatments, sites, and seasons. Despite this dependency on both biotic and abiotic contexts, species contributions were generally constrained by their relative dominance in undisturbed conditions. Rare species contributed positively to stability, while dominant species contributed negatively, indicating compensatory dynamics. Our framework offers an important step toward a more mechanistic understanding of ecological stability based on species performance.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"1 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitioning species contributions to ecological stability in disturbed communities\",\"authors\":\"Charlotte Kunze, Dominik Bahlburg, Pablo Urrutia-Cordero, Maren Striebel, Egle Kelpsiene, Silke Langenheder, Ian Donohue, Helmut Hillebrand\",\"doi\":\"10.1002/ecm.1636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ecosystems worldwide are experiencing a range of natural and anthropogenic disturbances, many of which are intensifying as global change accelerates. Ecological responses to those disturbances are determined by both the vulnerabilities of species and their interspecific interactions. Understanding how individual species contribute to the (in-)stability of an aggregated community property, or function, is fundamental to ecological management and conservation. Here, we present a framework to identify species contributions to stability based on their absolute and relative responses to disturbances. Using simulations, we show that these two dimensions enable identification of (de-)stabilizing species and reveal that competitive dominance determines the magnitude of both absolute and relative contributions to stability. Applying our framework to empirical data from a multi-site mesocosm experiment showed that species contributions varied among treatments, sites, and seasons. Despite this dependency on both biotic and abiotic contexts, species contributions were generally constrained by their relative dominance in undisturbed conditions. Rare species contributed positively to stability, while dominant species contributed negatively, indicating compensatory dynamics. Our framework offers an important step toward a more mechanistic understanding of ecological stability based on species performance.\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/ecm.1636\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ecm.1636","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Partitioning species contributions to ecological stability in disturbed communities
Ecosystems worldwide are experiencing a range of natural and anthropogenic disturbances, many of which are intensifying as global change accelerates. Ecological responses to those disturbances are determined by both the vulnerabilities of species and their interspecific interactions. Understanding how individual species contribute to the (in-)stability of an aggregated community property, or function, is fundamental to ecological management and conservation. Here, we present a framework to identify species contributions to stability based on their absolute and relative responses to disturbances. Using simulations, we show that these two dimensions enable identification of (de-)stabilizing species and reveal that competitive dominance determines the magnitude of both absolute and relative contributions to stability. Applying our framework to empirical data from a multi-site mesocosm experiment showed that species contributions varied among treatments, sites, and seasons. Despite this dependency on both biotic and abiotic contexts, species contributions were generally constrained by their relative dominance in undisturbed conditions. Rare species contributed positively to stability, while dominant species contributed negatively, indicating compensatory dynamics. Our framework offers an important step toward a more mechanistic understanding of ecological stability based on species performance.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.