用于工业规模海水制氢的工程氮化镍铁电催化剂

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-25 DOI:10.1002/adma.202415421
Huashuai Hu, Xunlu Wang, Zhaorui Zhang, Jiahao Liu, Xiaohui Yan, Xiaoli Wang, Jiacheng Wang, J. Paul Attfield, Minghui Yang
{"title":"用于工业规模海水制氢的工程氮化镍铁电催化剂","authors":"Huashuai Hu, Xunlu Wang, Zhaorui Zhang, Jiahao Liu, Xiaohui Yan, Xiaoli Wang, Jiacheng Wang, J. Paul Attfield, Minghui Yang","doi":"10.1002/adma.202415421","DOIUrl":null,"url":null,"abstract":"Seawater electrolysis under alkaline conditions is a crucial technology for sustainable hydrogen production. However, achieving the long-term stability of the electrocatalyst remains a significant challenge. In this study, it is demonstrated that surface reconstruction of a transition metal nitride (TMN) can be used to develop a highly stable oxygen evolution reaction (OER) electrocatalyst. Rapid introduction of phosphate groups (PO<sub>4</sub><sup>3−</sup>) accelerates the in situ surface reconstruction of Ni<sub>3</sub>FeN, generating a catalyst, with a conductive nitride core and Cl<sup>−</sup>-resistant hydroxide shell that demonstrates outstanding performance, maintaining stability for over 2500 h at 1 A cm<sup>−2</sup> current density in alkaline seawater. In situ characterization and density functional theory (DFT) calculations reveal the dynamic evolution of active sites, providing insights into the mechanisms driving long-term stability. This work not only introduces an efficient approach to TMN-based catalyst design but also advances the development of durable electrocatalysts for industrial-scale seawater hydrogen production.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"80 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered Nickel–Iron Nitride Electrocatalyst for Industrial-Scale Seawater Hydrogen Production\",\"authors\":\"Huashuai Hu, Xunlu Wang, Zhaorui Zhang, Jiahao Liu, Xiaohui Yan, Xiaoli Wang, Jiacheng Wang, J. Paul Attfield, Minghui Yang\",\"doi\":\"10.1002/adma.202415421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seawater electrolysis under alkaline conditions is a crucial technology for sustainable hydrogen production. However, achieving the long-term stability of the electrocatalyst remains a significant challenge. In this study, it is demonstrated that surface reconstruction of a transition metal nitride (TMN) can be used to develop a highly stable oxygen evolution reaction (OER) electrocatalyst. Rapid introduction of phosphate groups (PO<sub>4</sub><sup>3−</sup>) accelerates the in situ surface reconstruction of Ni<sub>3</sub>FeN, generating a catalyst, with a conductive nitride core and Cl<sup>−</sup>-resistant hydroxide shell that demonstrates outstanding performance, maintaining stability for over 2500 h at 1 A cm<sup>−2</sup> current density in alkaline seawater. In situ characterization and density functional theory (DFT) calculations reveal the dynamic evolution of active sites, providing insights into the mechanisms driving long-term stability. This work not only introduces an efficient approach to TMN-based catalyst design but also advances the development of durable electrocatalysts for industrial-scale seawater hydrogen production.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202415421\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415421","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碱性条件下的海水电解是可持续制氢的关键技术。然而,实现电催化剂的长期稳定性仍是一项重大挑战。本研究证明,过渡金属氮化物(TMN)的表面重构可用于开发高度稳定的氧进化反应(OER)电催化剂。磷酸基团(PO43-)的快速引入加速了 Ni3FeN 的原位表面重构,从而产生了一种具有导电氮化物内核和抗 Cl 的氢氧化物外壳的催化剂,这种催化剂性能卓越,在碱性海水中 1 A cm-2 电流密度下可保持稳定超过 2500 小时。原位表征和密度泛函理论(DFT)计算揭示了活性位点的动态演化,为了解驱动长期稳定性的机制提供了深入的见解。这项工作不仅为基于 TMN 的催化剂设计引入了一种有效的方法,还推动了用于工业规模海水制氢的耐用电催化剂的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineered Nickel–Iron Nitride Electrocatalyst for Industrial-Scale Seawater Hydrogen Production
Seawater electrolysis under alkaline conditions is a crucial technology for sustainable hydrogen production. However, achieving the long-term stability of the electrocatalyst remains a significant challenge. In this study, it is demonstrated that surface reconstruction of a transition metal nitride (TMN) can be used to develop a highly stable oxygen evolution reaction (OER) electrocatalyst. Rapid introduction of phosphate groups (PO43−) accelerates the in situ surface reconstruction of Ni3FeN, generating a catalyst, with a conductive nitride core and Cl-resistant hydroxide shell that demonstrates outstanding performance, maintaining stability for over 2500 h at 1 A cm−2 current density in alkaline seawater. In situ characterization and density functional theory (DFT) calculations reveal the dynamic evolution of active sites, providing insights into the mechanisms driving long-term stability. This work not only introduces an efficient approach to TMN-based catalyst design but also advances the development of durable electrocatalysts for industrial-scale seawater hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
UNLEASH: Ultralow Nanocluster Loading of Pt via Electro-Acoustic Seasoning of Heterocatalysts Versatile Biopolymers for Advanced Lithium and Zinc Metal Batteries High-Performance Narrowband Pure-Green OLEDs with Gamut Approaching BT.2020 Standard: Deuteration Promotes Device Efficiency and Lifetime Simultaneously Sustainable Lithography Paradigm Enabled by Mechanically Peelable Resists UOTe: Kondo-Interacting Topological Antiferromagnet in a Van der Waals Lattice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1