大肠杆菌在耦合微孔中的同步移动

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-25 DOI:10.1002/smll.202407832
Aleksandre Japaridze, Victor Struijk, Kushal Swamy, Ireneusz Rosłoń, Oriel Shoshani, Cees Dekker, Farbod Alijani
{"title":"大肠杆菌在耦合微孔中的同步移动","authors":"Aleksandre Japaridze, Victor Struijk, Kushal Swamy, Ireneusz Rosłoń, Oriel Shoshani, Cees Dekker, Farbod Alijani","doi":"10.1002/smll.202407832","DOIUrl":null,"url":null,"abstract":"Synchronization plays a crucial role in the dynamics of living organisms. Uncovering the mechanism behind it requires an understanding of individual biological oscillators and the coupling forces between them. Here, a single-cell assay is developed that studies rhythmic behavior in the motility of <i>E. coli</i> cells that can be mutually synchronized. Circular microcavities are used to isolate <i>E. coli</i> cells that swim along the cavity wall, resulting in self-sustained oscillations. Connecting these cavities by microchannels yields synchronization patterns with phase slips. It is demonstrated that the coordinated movement observed in coupled <i>E. coli</i> oscillators follows mathematical rules of synchronization which is used to quantify the coupling strength. These findings advance the understanding of motility in confinement, and open up new opportunities for engineering networks of coupled oscillators in microbial active matter.","PeriodicalId":228,"journal":{"name":"Small","volume":"6 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization of E. coli Bacteria Moving in Coupled Microwells\",\"authors\":\"Aleksandre Japaridze, Victor Struijk, Kushal Swamy, Ireneusz Rosłoń, Oriel Shoshani, Cees Dekker, Farbod Alijani\",\"doi\":\"10.1002/smll.202407832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronization plays a crucial role in the dynamics of living organisms. Uncovering the mechanism behind it requires an understanding of individual biological oscillators and the coupling forces between them. Here, a single-cell assay is developed that studies rhythmic behavior in the motility of <i>E. coli</i> cells that can be mutually synchronized. Circular microcavities are used to isolate <i>E. coli</i> cells that swim along the cavity wall, resulting in self-sustained oscillations. Connecting these cavities by microchannels yields synchronization patterns with phase slips. It is demonstrated that the coordinated movement observed in coupled <i>E. coli</i> oscillators follows mathematical rules of synchronization which is used to quantify the coupling strength. These findings advance the understanding of motility in confinement, and open up new opportunities for engineering networks of coupled oscillators in microbial active matter.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202407832\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407832","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

同步在生物体的动力学中起着至关重要的作用。要揭示其背后的机制,需要了解单个生物振荡器以及它们之间的耦合力。在此,我们开发了一种单细胞检测方法,用于研究可相互同步的大肠杆菌细胞运动的节律行为。圆形微腔用于隔离大肠杆菌细胞,这些细胞沿着腔壁游动,产生自持振荡。通过微通道连接这些空腔可产生具有相位滑移的同步模式。研究表明,在耦合的大肠杆菌振荡器中观察到的协调运动遵循同步的数学规则,该规则可用于量化耦合强度。这些发现加深了人们对封闭运动的理解,并为微生物活性物质中的耦合振荡器工程网络开辟了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synchronization of E. coli Bacteria Moving in Coupled Microwells
Synchronization plays a crucial role in the dynamics of living organisms. Uncovering the mechanism behind it requires an understanding of individual biological oscillators and the coupling forces between them. Here, a single-cell assay is developed that studies rhythmic behavior in the motility of E. coli cells that can be mutually synchronized. Circular microcavities are used to isolate E. coli cells that swim along the cavity wall, resulting in self-sustained oscillations. Connecting these cavities by microchannels yields synchronization patterns with phase slips. It is demonstrated that the coordinated movement observed in coupled E. coli oscillators follows mathematical rules of synchronization which is used to quantify the coupling strength. These findings advance the understanding of motility in confinement, and open up new opportunities for engineering networks of coupled oscillators in microbial active matter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Endocytic Uptake of Self-Assembled Iridium(III) Nanoaggregates for Holistic Treatment of Metastatic 3D Triple-Negative Breast Tumor Spheroids. Masthead: (Small 48/2024) Controllable Microwave Heating for Energy-Efficient and Universal Synthesis of Atomically Dispersed Metals on Nitrogen-Doped Carbon Nanofibers. Microporous Organic Ladder Polymer with Vertically Aligned Quinones for Sodium-Ion Battery. Facilitating Oriented Electron Transfer from Cu to Mo2C MXene for Weakened Mo─H Bond Toward Enhanced Photocatalytic H2 Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1