调频探测器:基于飞行数据的端到端飞行动作识别方法

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-11-17 DOI:10.1016/j.patrec.2024.11.005
Qingchao Wang, Dexiang Sun, Hao Pang, Xiaodong Zhao, Shoushuo Liu
{"title":"调频探测器:基于飞行数据的端到端飞行动作识别方法","authors":"Qingchao Wang,&nbsp;Dexiang Sun,&nbsp;Hao Pang,&nbsp;Xiaodong Zhao,&nbsp;Shoushuo Liu","doi":"10.1016/j.patrec.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Flight maneuver recognition (FMR) refers to automatic recognizing a series of aircraft flight patterns and is a key technology for flight training evaluation. However, the traditional FMR methods generally have higher computational complexity and lower recognition accuracy as these methods cannot effectively combine data segmentation, feature extraction and classification. We integrate all phases of FMR into a deep learning framework called FM-detector, instead of designing data segmentation, feature extraction, and classification methods separately. FM-detector consists of three parts: backbone for feature extraction, RPN for generating boundary proposals and CRN for flight maneuver classification and location. The experiment showed that our FM-detector achieved over 97% mAP in recognizing flight maneuvers, with higher quality predicted boundary and lower inference time. Code is available at <span><span>https://gitcode.net/m0_46456645/fm-detector</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"187 ","pages":"Pages 1-7"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FM-detector: End-to-end flight maneuver recognition method based on flight data\",\"authors\":\"Qingchao Wang,&nbsp;Dexiang Sun,&nbsp;Hao Pang,&nbsp;Xiaodong Zhao,&nbsp;Shoushuo Liu\",\"doi\":\"10.1016/j.patrec.2024.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flight maneuver recognition (FMR) refers to automatic recognizing a series of aircraft flight patterns and is a key technology for flight training evaluation. However, the traditional FMR methods generally have higher computational complexity and lower recognition accuracy as these methods cannot effectively combine data segmentation, feature extraction and classification. We integrate all phases of FMR into a deep learning framework called FM-detector, instead of designing data segmentation, feature extraction, and classification methods separately. FM-detector consists of three parts: backbone for feature extraction, RPN for generating boundary proposals and CRN for flight maneuver classification and location. The experiment showed that our FM-detector achieved over 97% mAP in recognizing flight maneuvers, with higher quality predicted boundary and lower inference time. Code is available at <span><span>https://gitcode.net/m0_46456645/fm-detector</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"187 \",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524003118\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003118","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

飞行动作识别(FMR)是指自动识别一系列飞机飞行模式,是飞行训练评估的一项关键技术。然而,由于传统的飞行动作识别方法不能有效地将数据分割、特征提取和分类结合起来,因此普遍存在计算复杂度较高、识别准确率较低的问题。我们将 FMR 的所有阶段整合到一个名为 FM-detector 的深度学习框架中,而不是分别设计数据分割、特征提取和分类方法。FM-detector 由三部分组成:用于特征提取的骨干网、用于生成边界建议的 RPN 和用于飞行动作分类和定位的 CRN。实验结果表明,我们的调频探测器在识别飞行动作方面达到了 97% 以上的 mAP,预测边界的质量更高,推理时间更短。代码见 https://gitcode.net/m0_46456645/fm-detector。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FM-detector: End-to-end flight maneuver recognition method based on flight data
Flight maneuver recognition (FMR) refers to automatic recognizing a series of aircraft flight patterns and is a key technology for flight training evaluation. However, the traditional FMR methods generally have higher computational complexity and lower recognition accuracy as these methods cannot effectively combine data segmentation, feature extraction and classification. We integrate all phases of FMR into a deep learning framework called FM-detector, instead of designing data segmentation, feature extraction, and classification methods separately. FM-detector consists of three parts: backbone for feature extraction, RPN for generating boundary proposals and CRN for flight maneuver classification and location. The experiment showed that our FM-detector achieved over 97% mAP in recognizing flight maneuvers, with higher quality predicted boundary and lower inference time. Code is available at https://gitcode.net/m0_46456645/fm-detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Bilateral symmetry-based augmentation method for improved tooth segmentation in panoramic X-rays GAF-Net: A new automated segmentation method based on multiscale feature fusion and feedback module Segmentation of MRI tumors and pelvic anatomy via cGAN-synthesized data and attention-enhanced U-Net Multichannel image classification based on adaptive attribute profiles Incremental component tree contour computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1